• Title/Summary/Keyword: 킬레이트

Search Result 264, Processing Time 0.023 seconds

The Elution Behaviors of Some Metal-2-Hydroxy-arylazopyrazolone Chelates by Reversed Phase Liquid Chromatography (II) (역상 액체 크로마토그래피에 의한 금속-2-hydroxy-arylazopyrazolone 유도체 킬레이트의 용리거동에 관한 연구 (II))

  • Lee, Won;Kim, In-Whan;Kang, Chang-Hee;Kim, Eun-Kyung
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.379-386
    • /
    • 1994
  • The elution behaviors in reversed-phase liquid chromatography were investigated thermodynamically for 2-hydroxy-arylazopyrazolone chelates with Ni(II), Cu(II), Co(III), Cr(III) on Novapak $C_{18}$ column. There was a good linear dependence of the capacity factor(k') on the variations of column temperature in van't Hoff plot. From this result, it was confirmed that the retention mechanism of these chelates in the reversed phase liquid chromatography system was invariant under the condition of various temperatures. For the most cases of the chelates studied, the dependence of capacity factor(1n k') on enthalpy$(-{\Delta}H)^{\circ}$, calculated by van't Hoff plot showed a good linearity(r=0.980~0.999) except [Pm(2-OH_(5-Cl)PaPz](r=0.787) and also the compensation temperatures(${\beta}$) showed constant values. The range of compensation temperature values calculated from the slope of $-{\Delta}H^{\circ}$ vs 1n k' plots was 374.3~806.9K. It was suggested that the retention of metal-2-hydroxy-arylazopyrazolone chelates in the reversed phase liquid chromatography system was largely affected by the hydrophobic effect.

  • PDF

Effect of Various Biodegradable Chelating Agents on Root Growth of Plants under Copper Stress (생분해 되는 다양한 킬레이트가 구리에 노출된 식물의 뿌리성장에 미치는 영향)

  • Lee, Sang-Man
    • Journal of Life Science
    • /
    • v.20 no.1
    • /
    • pp.17-21
    • /
    • 2010
  • Phytoextraction is a method of phytoremediation using plants to clean up metal-contaminated soils. Recently, various chelating agents were used in this method to increase the bioavailability of metals in soils. Even though phytoextraction is an economic and environmentally friendly method, this cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. This research focuses on identifying chelating agents which are biodegradable and applicable to highly metal-contaminated areas. Copper (Cu) as a target metal and cysteine (Cys), histidine (His), citrate, malate, oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Ethylenediamine tetracyclic acid (EDTA) was used as a comparative standard. Plants were grown on agar media containing various chelating agents with Cu to analyze the effect on root growth. Cys, His, and citrate strongly diminished the inhibitory effect of Cu on root growth of plants. The effect of oxalate was weak, and malate and succinate did not show significant effects. EDTA diminished and EDA promoted the inhibitory effects of Cu on root growth. These effects of chelating agents are correlated with Cu uptake into the roots. In conclusion, as biodegradable chelating agents, Cys, His, and citrate are good candidates for highly Cu-contaminated areas, while EDA can be useful in phytoextraction for Cu.

Characteristics Evaluation of Radiation Shielding Materials Used Waste Glass and Chelate Resins (폐유리와 킬레이트 수지를 사용한 방사선 차폐재의 재료특성 평가)

  • Kim, Hyo-Jung;Jang, Jong-Min;Song, Young-Soon;Noh, Jae-Ho;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.56-64
    • /
    • 2019
  • Various approaches have been attempted to develop recycling technologies related to industrial waste resources containing metals. Among them, glass is not decomposed into microorganisms, so landfill is not suitable, and interest in the recycling of waste glass is increasing. In this paper, by incorporating chelate resin to suppress the elution of heavy metals in waste glass and using waste glass as a fine aggregate and we want to evaluate the strength, drying shrinkage, alkali-silica reaction and heavy metal leaching of shielded filler materials and to provide basic data for utilizing waste glass as an economical and environmentally friendly shielding filler. As a result of the test, it was found that the use of waste glass as a fine aggregate was effective in the development of strength, but the incorporation of chelate resin had an influence on the strength development. In addition, the addition of chelate resin was effective in improving drying shrinkage but it was found to affect the alkali - silica reaction. As a result of the heavy metal leaching test, the KSLP test method satisfies all the criteria for heavy metal leaching. However, in case of lead, the limit of US ANSI 67-2007a was exceeded and further study should be done.

Growth-promoting Effect of New Iron-chelating Fertilizer on Lettuce (산세수와 게껍질을 이용한 신기능성 철분 비료의 상추 생육 촉진 효과)

  • Hwang, Ji Young;Jun, Sang Eun;Park, Nam-Jo;Oh, Ju Sung;Lee, Yong Jik;Sohn, Eun Ju;Kim, Gyung-Tae
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.390-397
    • /
    • 2017
  • Iron (Fe) is an important micronutrient for the health and growth of plants. Iron is usually provided by fertilizers, and iron-chelate fertilizers are well absorbed by plants. This study presents the plant growth-promoting effects of a new functional iron fertilizer, Fe-chelating crab shell powder (FCSP), which is generated from the chelation of Fe ions with crab shell powder. Iron chelate was derived from spent pickling liquor, which is rich in reductive iron, iron(II) oxide. To analyze the effects of FCSP on plant growth, we treated lettuce with several concentrations of FCSP in both lab- and field-scale experiments. In the lab-scale test, the treatment of 50 ppm of FCSP highly promoted growth and resulted in increases in the size, weight, number and chlorophylls content of leaves of plants compared to the treatment of crab shell powder. Fifty ppm of FCSP also increased the size and weight of leaves up to 2 times compared to the application of chemical fertilizer and/or compost in field conditions. In addition, the FCSP treatment resulted in the highest ion uptake of Fe in lettuce leaves. Moreover, FCSP led to increases in the amounts of Fe, Ca, available phosphorus and organic matter in treated soil, indicating that soil quality was improved. Taken together, our results demonstrate that FCSP promotes lettuce growth via enhancement of Fe availability and improves soil quality. Therefore, FCSP can be utilized as a new functional iron fertilizer.

Synthesis and Characterization of Pentaethylenehexaamine Chelating Resin (펜타에틸렌헥사아민 킬레이트수지의 합성 및 특성)

  • Kim, Sun Deuk;Park, Jung Eun
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.443-451
    • /
    • 1993
  • Pentaethylenehexaamine(penten) was reacted with a chloromethylated polystyrene resin on the purpose of the synthesis of polyamine chelating resin, $(P)_c$-penten. The stepwise dissociation constants of the synthesized polyamine chelating resin and the stability constants with metal ions were determined by Bjerrum's method. These stability constants were compared with those of the free penten. The adsorptivities and eluting tendencies of several metal ions on the chelating resin were studied.

  • PDF

Elution Behaviors of Stannous Ion by PSA on Chelating Resin (킬레이트 수지에서의 PSA에 의한 주석(Ⅱ)이온의 용리현상)

  • Cha, Ki-Won;Choi, Hyun-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.5
    • /
    • pp.379-383
    • /
    • 1995
  • The elution behaviors of stannous ion by PSA(phenol sulfonic acid) as an eluent on chelating resin, Amberlite IRC-718 have been investigated. When 0.10 M stannous solution was adsorbed on the resin and eluted with various concentrations of PSA, the two peaks of stannous ion were appeared in the elution curve. These two peak areas were changed according to the PSA concentration. Using these results, the stability constant of the complex formation between Sn2+ and PSA was calculated. This value is 2.0 ${\times}$ 10-1.

  • PDF

파이렌 이중체 기반 2 킬레이트 결합자리 형광분자에 대한 금속 양이온의 형광 소광 원리 탐색

  • Kim, San;Nam, Yeon-Sik;Im, Jong-Hyeon;Lee, Jin-Yong
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.118-127
    • /
    • 2017
  • 형광화학센서는 형광분자의 화학적으로 유도된 형광의 소광 또는 증광을 통해 생체 등에서 특정 물질을 관찰할 수 있기에 그 활용도가 높다. 본 연구에서는 두 개의 서로 다른 킬레이트 결합자리를 가지는, 파이렌 이중체를 발색단의 형광분자(Pyex)를 이용하여, PET (photoinduced electron transition)와 AID (absorbance intensity decreasing)의 형광 소광 원리에 집중하여, 전자구조계산과 TD (time-dependent) 계산을 근거로 금속 양이온의 형광 소광 원리를 분류하고, 더불어 그에 관여하는 금속 양이온의 원자오비탈까지 탐색하였다. 그 결과 Pyex와 그 칼륨이온 복합체에서는 실험값과 일치하는 형광이, 납과 은 이온 복합체에서는 소광이 나타났다. 구체적으로는 납 이온의 경우 PET를 주된 원인으로 AID와 함께 작용하여 소광을 발생시키고, 은 이온의 경우는 AID에 의해 소광이 일으키는 것으로 밝혀졌다. 또한 납 이온의 p 오비탈이 소광에 관여하는 것으로 볼 수 있는 결과도 나타났다.

  • PDF