• Title/Summary/Keyword: 키워드 필터링

Search Result 89, Processing Time 0.026 seconds

A Keyword-based Filtering Technique of Document-centric XML using NFA Representation (NFA 표현을 사용한 문서-중심적 XML의 키워드 기반 필터링 기법)

  • Lee Kyoung-Han;Park Seog
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06c
    • /
    • pp.25-27
    • /
    • 2006
  • XPath 명세는 XML 원소 내용을 필터링하기 위한 질의어 작성이 어렵다. 본 논문은 이러한 문제점을 해결하기 위해 SQL의 LIKE 연산자에서 사용되던 특별한 매칭 문자 '%' 를 허용한 확장된 XPath 명세와 그것을 표준 질의어로 사용하는 문서-중심적 XML 필터링 기법인 Pfilter를 제안한다. Pfilter는 값-기반 술어(value-based predicate)에서 피연산자의 공통 앞부분 문자를 공유하여 값-기반 술어의 처리 성능을 향상시킨다. 또한 본 논문은 Pfilter와 대표적인 데이터-중심적 XML 필터링 기법인 Yfilter를 값-기반 술어 처리의 확장성과 효율성에 대해 비교하고 Pfilter의 값-기반 술어 삽입, 삭제, 처리 결과를 제공한다.

  • PDF

Information-providing Application Based on Web Crawling (웹 크롤링을 통한 개인 맞춤형 정보제공 애플리케이션)

  • Ju-Hyeon Kim;Jeong-Eun Choi;U-Gyeong Shin;Min-Jun Piao;Tae-Kook Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.295-296
    • /
    • 2023
  • 본 논문에서는 웹 크롤링을 통한 개인 맞춤형 정보제공 애플리케이션에 관해 연구하였다. 본 서비스는 Java의 Jsoup 라이브러리를 이용해서 웹 크롤링(Web Crawling)한 데이터를 MySQL에 저장한다. 이를 통해 사용자가 지정한 키워드를 필터링하여 사용자에게 정보를 제공한다. 예를 들어 사용자가 지정한 키워드 관련 공지 사항이 업데이트되면 구현한 앱 내에서 확인 가능하며, KakaoTalk 알림톡을 통해서도 업데이트된 정보를 실시간으로 전송받는 서비스를 구현하였다.

Retrieval Model using Subject Classification Table, User Profile, and LSI (전공분류표, 사용자 프로파일, LSI를 이용한 검색 모델)

  • Woo Seon-Mi
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.789-796
    • /
    • 2005
  • Because existing information retrieval systems, in particular library retrieval systems, use 'exact keyword matching' with user's query, they present user with massive results including irrelevant information. So, a user spends extra effort and time to get the relevant information from the results. Thus, this paper will propose SULRM a Retrieval Model using Subject Classification Table, User profile, and LSI(Latent Semantic Indexing), to provide more relevant results. SULRM uses document filtering technique for classified data and document ranking technique for non-classified data in the results of keyword-based retrieval. Filtering technique uses Subject Classification Table, and ranking technique uses user profile and LSI. And, we have performed experiments on the performance of filtering technique, user profile updating method, and document ranking technique using the results of information retrieval system of our university' digital library system. In case that many documents are retrieved proposed techniques are able to provide user with filtered data and ranked data according to user's subject and preference.

Classification Performance of News Filtering System by Fuzzy Inference and Kohonen Network (퍼지추론과 코호넨 신경망을 사용한 뉴스 필터링 시스템의 분류 능력)

  • Kim, Jong-Wan;Cho, Kyu-Cheol;Kim, Byeong-Man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.291-294
    • /
    • 2003
  • 많은 양의 유즈넷 뉴스 중에서 찾고자 하는 정확한 정보를 빠른 시간 안에 검색하고, 원하는 정보만 필터링 하는 것은 중요하다. 하지만 뉴스 문서는 이메일과 달라서 미리 자신에게 맞는 뉴스그룹을 등록해 주어야만 정보를 얻을 수 있다. 본 연구에서는 다양한 뉴스그룹들 중에서 사용자와 취향이 가장 유사한 뉴스그룹을 코호넨 신경망을 이용하여 분류하는 서비스를 제공한다. 신경망을 학습시키기 위한 뉴스 문서의 키워드들을 선택하기 위해 예제 문서들로부터 후보 용어들을 추출하고 퍼지 추론을 적용하여 대표 용어들을 선택한다. 뉴스 필터링 시스템의 분류 성능을 평가하기 위하여 유클리드 거리 면에서 비교한 결과, 제안한 방법의 유용성을 확인할 수 있었다.

  • PDF

Comparison Speed of Data Filtering for Log Analysis (로그분석을 위한 데이터 필터링 속도 비교 분석)

  • Kim, Sung-Jun;Lee, Jae-Kook;Woo, Jun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.181-183
    • /
    • 2015
  • 시스템 로그의 분석은 장애의 원인 분석 및 발생 가능성을 예측하는데 중요한 행위이다. 하지만, 로그의 특성상 관련 로그만을 추출하고 이를 대상으로 분석을 진행하는 것이 분석의 시간을 단축하는데 도움이 된다. 본 논문에서는 대용량의 로그파일에서 원하는 키워드를 포함하는 로그를 추출하는 여러 방식 중에서 가장 빠르게 추출할 수 있는 방식을 선택하기 위해서 슈퍼컴퓨터에서 생성된 실제 로그 파일을 대상으로 로그 필터링 속도를 비교하였다. 이를 통해서 선택된 방식을 이용하여 대규모 로그를 필터링하고 이를 기반으로 향후 구축할 로그 분석 솔루션을 구축할 예정이다.

Accelerating Keyword Search Processing over XML Documents using Document-level Ranking (문서 단위 순위화를 통한 XML 문서에 대한 키워드 검색 성능 향상)

  • Lee, Hyung-Dong;Kim, Hyoung-Joo
    • Journal of KIISE:Databases
    • /
    • v.33 no.5
    • /
    • pp.538-550
    • /
    • 2006
  • XML Keyword search enables us to get information easily without knowledge of structure of documents and returns specific and useful partial document results instead of whole documents. Element level query processing makes it possible, but computational complexity, as the number of documents grows, increases significantly overhead costs. In this paper, we present document-level ranking scheme over XML documents which predicts results of element-level processing to reduce processing cost. To do this, we propose the notion of 'keyword proximity' - the correlation of keywords in a document that affects the results of element-level query processing using path information of occurrence nodes and their resemblances - for document ranking process. In benefit of document-centric view, it is possible to reduce processing time using ranked document list or filtering of low scored documents. Our experimental evaluation shows that document-level processing technique using ranked document list is effective and improves performance by the early termination for top-k query.

Information-providing Application Based on Web Crawling (웹 크롤링을 통한 개인 맞춤형 정보제공 애플리케이션)

  • Ju-Hyeon Kim;Jeong-Eun Choi;U-Gyeong Shin;Min-Jun Piao;Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.21-27
    • /
    • 2024
  • This paper presents the implementation of a personalized real-time information-providing application utilizing filtering and web crawling technologies. The implemented application performs web crawling based on the user-set keywords within web pages, using the Jsoup library as a basis for the selected keywords. The crawled data is then stored in a MySQL database. The stored data is presented to the user through an application implemented using Flutter. Additionally, mobile push notifications are provided using Firebase Cloud Messaging (FCM). Through these methods, users can efficiently obtain the desired information quickly. Furthermore, there is an expectation that this approach can be applied to the Internet of Things (IoT) where big data is generated, allowing users to receive only the information they need.

Event Template Extraction for the Decision Support based on Social Media (소셜미디어 기반 의사결정 지원을 위한 이벤트 템플릿 추출)

  • Heo, Jeong;Ryu, Pum-Mo;Choi, Yoon-Jae;Kim, Hyun-Ki
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.53-57
    • /
    • 2012
  • 본 논문은 소셜 미디어 기반 의사결정 지원 시스템인 '소셜위즈덤'에 포함된 이벤트 템플릿 추출에 대해서 소개한다. 의사결정 지원 시스템은 경제적, 사회적 중요사항을 결정할 수 있도록 관련 정보와 인사이트(Insight)를 제공하는 정보시스템을 이른다. 기존 시스템은 단지 특정 키워드 빈도나 공기하는 키워드들의 관계만을 제공하였다. 그러나, 소셜위즈덤은 이벤트로 정의되는 주체(Subject), 이벤트 속성(Event-Property), 객체(Object)의 트리플(Triple) 집합인 템플릿을 추출하여 이를 기반으로 이벤트 정보를 함께 제공한다. 템플릿 추출은 고정밀 언어분석의 관계추출 기술과 온톨로지에 기반한 템플릿 제약 및 필터링 규칙을 이용하였다. 수작업으로 구축한 평가데이터로 평가한 결과, 템플릿 추출 성능(F-Score)은 뉴스 0.544, 블로그 0.3386, 트위터 0.3251이고 전체 통합 성능은 0.4648이었다. 필터링 성능(Accuracy)은 뉴스 0.7257, 블로그 0.6122, 트위터 0.6207이고 전체 통합 성능은 0.722이었다.

  • PDF

A Normalization Method of Distorted Korean SMS Sentences for Spam Message Filtering (스팸 문자 필터링을 위한 변형된 한글 SMS 문장의 정규화 기법)

  • Kang, Seung-Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.7
    • /
    • pp.271-276
    • /
    • 2014
  • Short message service(SMS) in a mobile communication environment is a very convenient method. However, it caused a serious side effect of generating spam messages for advertisement. Those who send spam messages distort or deform SMS sentences to avoid the messages being filtered by automatic filtering system. In order to increase the performance of spam filtering system, we need to recover the distorted sentences into normal sentences. This paper proposes a method of normalizing the various types of distorted sentence and extracting keywords through automatic word spacing and compound noun decomposition.

Knowledge Graph-based Korean New Words Detection Mechanism for Spam Filtering (스팸 필터링을 위한 지식 그래프 기반의 신조어 감지 매커니즘)

  • Kim, Ji-hye;Jeong, Ok-ran
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.79-85
    • /
    • 2020
  • Today, to block spam texts on smartphone, a simple string comparison between text messages and spam keywords or a blocking spam phone numbers is used. As results, spam text is sent in a gradually hanged way to prevent if from being automatically blocked. In particular, for words included in spam keywords, spam texts are sent to abnormal words using special characters, Chinese characters, and whitespace to prevent them from being detected by simple string match. There is a limit that traditional spam filtering methods can't block these spam texts well. Therefore, new technologies are needed to respond to changing spam text messages. In this paper, we propose a knowledge graph-based new words detection mechanism that can detect new words frequently used in spam texts and respond to changing spam texts. Also, we show experimental results of the performance when detected Korean new words are applied to the Naive Bayes algorithm.