• Title/Summary/Keyword: 키워드네트워크 분석

Search Result 478, Processing Time 0.026 seconds

A Study on the Intellectual Structure of Domestic Library and Information Science Based on Co-Citation (동시인용 분석 기반 국내 문헌정보학 분야의 지적구조에 관한 연구)

  • MinHui Lee;Seung-Jin Kwak
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.4
    • /
    • pp.311-331
    • /
    • 2023
  • This study attempted to explore the characteristics of knowledge communication and investigate important research topics and key authors by analyzing major academic papers in the field of LIS in Korea for five years from 2018 to 2022. The research method collected and analyzed papers published for five years in four key journals in the field of domestic Library and Information Science from the Korean Citation Index (KCI) database. The paper was selected to extract the author data of the paper and the data of the reference, and network visualization was performed by conducting literature co-citation analysis and author co-citation analysis using Netminer. As a result of the analysis, it was possible to derive a pair of co-citations between authors, and it was confirmed that it is important to include multiple authors in the intellectual structure analysis in the academic field through co-citation frequency analysis among researchers. The literature confirmed the correlation between the topics of the paper, and it was found that research related to Library and Information Science was centered on the topics of library, digital, user, service, and data.

Marketability analysis and commercialization methodology analysis system using big dataof Digital Policy & Management (빅데이터를 활용한 시장분석 및 사업화방법론 분석시스템)

  • Yong-Ho Kim;Hyung-Beom Park
    • Journal of Digital Convergence
    • /
    • v.21 no.2
    • /
    • pp.27-32
    • /
    • 2023
  • This study is about a marketability analysis and commercialization methodology analysis system using big data, and a marketability analysis and commercialization methodology analysis system that can analyze the marketability of the product based on a content channel capable of viral marketing. The marketability analysis and commercialization methodology analysis system using big data according to this study analyzes the marketability of the products to be analyzed by analyzing the marketing content provided on the content channel, so it has the advantage of determining more accurate viral marketing effects on the products to be analyzed.

Text Mining and Visualization of Unstructured Data Using Big Data Analytical Tool R (빅데이터 분석 도구 R을 이용한 비정형 데이터 텍스트 마이닝과 시각화)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1199-1205
    • /
    • 2021
  • In the era of big data, not only structured data well organized in databases, but also the Internet, social network services, it is very important to effectively analyze unstructured big data such as web documents, e-mails, and social data generated in real time in mobile environment. Big data analysis is the process of creating new value by discovering meaningful new correlations, patterns, and trends in big data stored in data storage. We intend to summarize and visualize the analysis results through frequency analysis of unstructured article data using R language, a big data analysis tool. The data used in this study was analyzed for total 104 papers in the Mon-May 2021 among the journals of the Korea Institute of Information and Communication Engineering. In the final analysis results, the most frequently mentioned keyword was "Data", which ranked first 1,538 times. Therefore, based on the results of the analysis, the limitations of the study and theoretical implications are suggested.

An Analysis of News Trends for Libraries in Korea: Based on 1990~2018 News Big Data (도서관에 대한 언론 보도 경향: 1990~2018 뉴스 빅데이터 분석)

  • Han, Seunghee
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.3
    • /
    • pp.7-36
    • /
    • 2019
  • In this study, quantitative and content analysis was conducted on 37,818 news articles that were reported on the subject of 'library' for 29 years from 1990 to 2018 in order to analyze the tendency of media coverage about 'library'. First, the quantitative change in media coverage was analyzed according to the criteria by time, subject and media type. In addition, keyword frequency analysis and semantic network analysis were conducted to analyze the trends of the contents of the press and the frames inherent in the press. The results showed that the media showed a major interest in the library's informational, educational, and cultural functions, and the trend of the subject's interest was generally consistent with that of the library community, except for the issue of librarianship. Lastly, the main attitudes that the media take toward the reporting of library articles were the reporting and advertising functions.

Analysis of Research Trends of 'Word of Mouth (WoM)' through Main Path and Word Co-occurrence Network (주경로 분석과 연관어 네트워크 분석을 통한 '구전(WoM)' 관련 연구동향 분석)

  • Shin, Hyunbo;Kim, Hea-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.179-200
    • /
    • 2019
  • Word-of-mouth (WoM) is defined by consumer activities that share information concerning consumption. WoM activities have long been recognized as important in corporate marketing processes and have received much attention, especially in the marketing field. Recently, according to the development of the Internet, the way in which people exchange information in online news and online communities has been expanded, and WoM is diversified in terms of word of mouth, score, rating, and liking. Social media makes online users easy access to information and online WoM is considered a key source of information. Although various studies on WoM have been preceded by this phenomenon, there is no meta-analysis study that comprehensively analyzes them. This study proposed a method to extract major researches by applying text mining techniques and to grasp the main issues of researches in order to find the trend of WoM research using scholarly big data. To this end, a total of 4389 documents were collected by the keyword 'Word-of-mouth' from 1941 to 2018 in Scopus (www.scopus.com), a citation database, and the data were refined through preprocessing such as English morphological analysis, stopwords removal, and noun extraction. To carry out this study, we adopted main path analysis (MPA) and word co-occurrence network analysis. MPA detects key researches and is used to track the development trajectory of academic field, and presents the research trend from a macro perspective. For this, we constructed a citation network based on the collected data. The node means a document and the link means a citation relation in citation network. We then detected the key-route main path by applying SPC (Search Path Count) weights. As a result, the main path composed of 30 documents extracted from a citation network. The main path was able to confirm the change of the academic area which was developing along with the change of the times reflecting the industrial change such as various industrial groups. The results of MPA revealed that WoM research was distinguished by five periods: (1) establishment of aspects and critical elements of WoM, (2) relationship analysis between WoM variables, (3) beginning of researches of online WoM, (4) relationship analysis between WoM and purchase, and (5) broadening of topics. It was found that changes within the industry was reflected in the results such as online development and social media. Very recent studies showed that the topics and approaches related WoM were being diversified to circumstantial changes. However, the results showed that even though WoM was used in diverse fields, the main stream of the researches of WoM from the start to the end, was related to marketing and figuring out the influential factors that proliferate WoM. By applying word co-occurrence network analysis, the research trend is presented from a microscopic point of view. Word co-occurrence network was constructed to analyze the relationship between keywords and social network analysis (SNA) was utilized. We divided the data into three periods to investigate the periodic changes and trends in discussion of WoM. SNA showed that Period 1 (1941~2008) consisted of clusters regarding relationship, source, and consumers. Period 2 (2009~2013) contained clusters of satisfaction, community, social networks, review, and internet. Clusters of period 3 (2014~2018) involved satisfaction, medium, review, and interview. The periodic changes of clusters showed transition from offline to online WoM. Media of WoM have become an important factor in spreading the words. This study conducted a quantitative meta-analysis based on scholarly big data regarding WoM. The main contribution of this study is that it provides a micro perspective on the research trend of WoM as well as the macro perspective. The limitation of this study is that the citation network constructed in this study is a network based on the direct citation relation of the collected documents for MPA.

A Method for Detecting Event-Location based on Similar Keyword Extraction in Tweet Text (트윗 텍스트의 유사 키워드 추출을 통한 이벤트 지역 탐지 기법)

  • Yim, Junyeob;Ha, Hyunsoo;Hwang, Byung-Yeon
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.1-7
    • /
    • 2015
  • Twitter has the fast propagation and diffusion of information compare to other SNS. Therefore, many researches about detecting real-time event using twitter are progressing. Twitter real-time event detecting system assumes every twitter user as a sensor and analyzes their written tweet in order to detect the event. Researches that are related to this twitter have already obtained good results but confronted the limits because of some problems. Especially, many existing researches are using the method that can trace an event location by using GPS coordinate. However, it can be suggested a definite limitation through the present user's skeptical responses about making personal location information public. Therefore, this paper suggests the method that traces the location information in tweet contents text without using the provided location information from twitter. Associated words were grouped by using the keyword that extracted in tweet contents text. The place that the events have occurred and whether the events have surely occurred are detected by this experiment using this algorithm. Furthermore, this experiment demonstrated the necessity of the suggested methods by showing faster detection compare to the other existing media.

Design and Implementation of an Analysis module based on MapReduce for Large-scalable Social Data (대용량 소셜 데이터의 의미 분석을 위한 MapReduce 기반의 분석 모듈 설계 및 구현)

  • Lee, Hyeok-Ju;Kim, Myoung-Jin;Lee, Han-Ku;Yoon, Hyo-Gun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.357-360
    • /
    • 2011
  • 최근 인터넷과 통신기술, 특히 모바일과 관련된 기술의 급속한 발전으로 소셜 커뮤니케이션 수단으로 대표되는 SNS(Social Networking Service)가 중요한 이슈로 부각되어지고 있다. SNS 서비스 제공시 중요하게 고려되어져야 할 사항은 정확하고 의미 있는 데이터를 통해서 사용자가 원하고 관심 있는 분야의 정보를 어떻게 제공할 것인가에 초점이 맞춰져 있어야 한다. 그러나 최근 폭발적으로 증가되어지고 있는 소셜 데이터 때문에 사용자는 의미 분석이 정확하게 이루어지지 않은 신뢰성이 결여된 소셜 커뮤니케이션 서비스를 제공받고 있다. 이러한 소셜데이터 분석의 문제점을 해결하기 위해서 본 논문에서는 소셜 네트워크 서비스에 필요한 데이터를 수집하고, 클라우드 컴퓨팅 환경에서 수집된 대용량 SNS 데이터의 의미를 분석 할 수 있는 MapReduce 기반의 분석 모듈의 구조를 제안하였다. 제안한 모듈은 의미 분석에 필요한 소셜 데이터를 수집하는 수집 기능과 수집된 소셜데이터의 의미 분석을 수행하는 분석 기능을 포함하고 있다. 수집 기능은 SNS에서 생성되는 텍스트 형태의 데이터를 수집하고 MapReduce를 통해서 데이터를 분석하기 쉽게 적절한 크기로 생성된 파일을 분할한다. 수집된 소셜 데이터의 의미 분석은 기존 TF-IDF 방식에 개선된 Weighted-MINMAX 적용한 알고리즘을 통해서 구현하였다. 개선된 알고리즘은 단어의 중요도를 평가하고, 중요도가 높은 단어로 구성된 의미정보 제공 서비스를 지원한다. 시스템의 성능 평가를 위해서 노드별 데이터 처리시간과 추출 키워드의 정확도를 측정하였다.

Social Issue Analysis Based on Sentiment of Twitter Users (트위터 사용자들의 감성을 이용한 사회적 이슈 분석)

  • Kim, Hannah;Jeong, Young-Seob
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.11
    • /
    • pp.81-91
    • /
    • 2019
  • Recently, social network service (SNS) is actively used by public. Among them, Twitter has a lot of tweets including sentiment and it is convenient to collect data through open Aplication Programming Interface (API). In this paper, we analyze social issues and suggest the possibility of using them in marketing through sentimental information of users. In this paper, we collect twitter text about social issues and classify as positive or negative by sentiment classifier to provide qualitative analysis. We provide a quantitative analysis by analyzing the correlation between the number of like and retweet of each tweet. As a result of the qualitative analysis, we suggest solutions to attract the interest of the public or consumers. As a result of the quantitative analysis, we conclude that the positive tweet should be brief to attract the users' attention on the Twitter. As future work, we will continue to analyze various social issues.

Research on the change of perception of abandoned dogs through big data analysis

  • Jang, Ji-Yun;Lee, Seok-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.115-123
    • /
    • 2021
  • This study aims to analyze the changes in public perception of abandoned dogs through big data analysis. Data from January 2017 to July 2020 were collected to analyze how the quantitative change in social issues with abandoned dogs as a keyword had an effect on public perception of abandoned dogs, and factors that influence positive/negative perceptions. As a result of the study, it was confirmed that the number of stray dogs and the number of documents related to stray dogs had a positive correlation, and specific time series changes were found through various analysis techniques such as text mining, network analysis, and sentiment analysis. This study will have significance as basic data that can be used for policy establishment or other research on abandoned dogs. we hope it will help to solve problems so as to improve awareness of abandoned dogs and develop a sense of responsibility.

Intellectual Structure Analysis on the Field of Open Data Using Co-word Analysis (동시출현단어 분석을 이용한 오픈 데이터 분야의 지적 구조 분석)

  • HyeKyung Lee;Yong-Gu Lee
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.4
    • /
    • pp.429-450
    • /
    • 2023
  • The purpose of this study is to examine recent trends and intellectual structures in research related to open data. To achieve this, the study conducted a search for the keyword "open data" in Scopus and collected a total of 6,543 papers from 1999 to 2023. After data preprocessing, the study focused on the author keywords of 5,589 papers to perform network analysis and derive centrality in the field of open data research and linked open data research. As a result, the study found that "big data" exhibited the highest centrality in research related to open data. The research in this area mainly focuses on the utilization of open data as a concept of public data, studies on the application of open data in analysis related to big data as an associated concept, and research on topics related to the use of open data, such as the reproduction, utilization, and access of open data. In linked open data research, both triadic centrality and closeness centrality showed that "the semantic web" had the highest centrality. Moreover, it was observed that research emphasizing data linkage and relationship formation, rather than public data policies, was more prevalent in this field.