Proceedings of the Korean Information Science Society Conference
/
2005.11a
/
pp.1042-1044
/
2005
고화질 입체 영상의 효과적인 재생을 위해 PC 클러스터를 활용한 여러 형태의 병렬화 기법이 제안되었지만, 영상을 구성하는 객체의 분포가 균일하지 않은 경우 충분한 성능을 발휘하지 못하였다. 본 연구에서는 Maya 렌더러를 채택한 PC 클러스터 기반의 병렬 렌더링 시스템을 구축하고, 병렬화 성능을 높이기 위한 효과적인 부하 균형 기법을 개발하였다. 특히 애니메이션을 구성하는 연속 프레임 작업에서 프레임 간의 연관성(coherence)이 높다는 사실에 근거하여, 임의 프레임의 각 분할 영역에 소요된 계산량을 바탕으로 다음 프레임의 부하 분포를 예측하고 이에 맞게 각 프로세서의 작업 영역을 재조정하는 기법을 제안하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.3
/
pp.369-374
/
2004
A cluster merging algorithm that merges convex clusters resulted by the Fuzzy Convex Clustering(FCC) method into non-convex clusters was proposed. This was achieved by proposing a fast and reliable distance measure between two convex clusters using Support Vector Machines(SVM) to improve accuracy and speed over other existing conventional methods. In doing so, it was possible to reduce cluster number without losing its representation of the data. In this paper, results for several data sets are given to show the validity of our distance measure and algorithm.
The existing cluster-based routing protocols have some problems. Firstly, because of selecting cluster head at random, they occur a node concentration problem. Secondly, they have a low reliability for data communication due to the less consideration of node communication range. Finally, data communication overhead is greatly increased because of sending all sensor node information to sink node for constructing clusters. To solve these problems, we in this paper, propose a cluster-based routing protocol using message reception success rate. Firstly, to solve the node concentration problem, we design a cluster head selection algorithm based on node connectivity and devise cluster spliting/merging algorithms. Secondly, to guarantee data communication reliability, we use message reception success rate. Finally, to reduce data communication overhead, we use only neighbor nodes information at both cluster construction and cluster head selection.
This paper proposes a method for decomposing a Hangul glyph of outline fonts into its initial, medial and final components using statistical-structural information. In a font family, the positions of components are statistically consistent and the stroke relationships of a Hangul character reflect its structure. First, we create the component histograms that accumulate the shapes and positions of the same components. Second, we make pixel clusters from character image based on pixel direction probabilities and extract the candidate strokes using position, direction, size of clusters and adjacencies between clusters. Finally, we find the best structural match between candidate strokes and predefined character model by relaxation labeling. The proposed method in this paper can be used for a study on formative characteristics of Hangul font, and for a font classification/retrieval system.
Park Doo-Sik;Yang Woo-Jin;Ban Min-Ho;Jeong Karp-Joo;Lee Jong-Hyun;Lee Sang-Moon;Lee Chang-Sung;Shin Soon-Churl;Lee In-Ho
Journal of KIISE:Computer Systems and Theory
/
v.33
no.7
/
pp.421-428
/
2006
In this paper, the way of remote installation and back-up of 3-tier structure is introduced for efficient utilizing the cluster system resources distributed at several places. Recently, cluster system is constructed as the system of over hundreds nodes under complex network system mixed with public networks and private networks. Therefore, the as installation method suitable for the large scale cluster system and the remote recovery of failure nodes are important. However the previous researches which are based on 2-tier architecture may not provide the efficient cluster installation and image back-up method when the network of cluster system is composed of several private networks and public networks. In this paper, RISE (Remote Installation Service and Environment) based on the 3-tier architecture is proposed to solve this problem. In our approach, the managing node's role is divided into the global master node (GRISE) and the local master node (LRISE) to provide the efficient initial system deployment and remote failure recovery of distributed cluster system under the various network systems. Also, LRISE's availability is ensured under the complex network environments by adopting the auto-synchronization mechanism between GRISE and LRISE. In this work, a 64-node cluster system with gigabit network system is utilized for the experiment. From the experimental result, the system image with 1.86GB data can be obtained in 5 minutes and 53 seconds and the image-based installation of 64-node system can be carried out in 17 minutes and 53 seconds.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.1
no.3
/
pp.69-76
/
2008
This paper concerns Fuzzy Radial Basis Function Neural Network (FRBFNN) and automatic rule generation of extraction of the FRBFNN by means of mountain clustering. In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values (degree of membership) directly rely on the computation of the relevant distance between data points. Also, we consider high-order polynomial as the consequent part of fuzzy rules which represent input-output characteristic of sup-space. The number of clusters and the centers of clusters are automatically generated by using mountain clustering method based on the density of data. The centers of cluster which are obtained by using mountain clustering are used to determine a degree of membership and weighted least square estimator (WLSE) is adopted to estimate the coefficients of the consequent polynomial of fuzzy rules. The effectiveness of the proposed model have been investigated and analyzed in detail for the representative nonlinear function.
In this paper, we propose the LPC+-file for efficient indexing of high-dimensional image data. With the proliferation of multimedia data, there Is an increasing need to support the indexing and retrieval of high-dimensional image data. Recently, the LPC-file (5) that based on vector approximation has been developed for indexing high-dimensional data. The LPC-file gives good performance especially when the dataset is uniformly distributed. However, compared with for the uniformly distributed dataset, its performance degrades when the dataset is clustered. We improve the performance of the LPC-file for the strongly clustered image dataset. The basic idea is to adaptively partition the data space to find subspaces with high-density clusters and to assign more bits to them than others to increase the discriminatory power of the approximation of vectors. The total number of bits used to represent vector approximations is rather less than that of the LPC-file since the partitioned cells in the LPC+-file share the bits. An empirical evaluation shows that the LPC+-file results in significant performance improvements for real image data sets which are strongly clustered.
Park, Jong-Il;Lee, Kyun-Hwa;Lee, Jooh-Hyun;Shin, Yong-Tae
The KIPS Transactions:PartC
/
v.17C
no.5
/
pp.427-432
/
2010
It is important to efficiently elect the cluster header in Hierarchical Sensor Network, because it largely effects on the life duration of the network. Therefore, a recent research is going forward a research activity with regard to life time extension of the whole network for efficient cluster header election. In this paper, we propose the new Cluster Header Election Scheme in which the cluster is divided into Group considering Distance from a Sink, and a cluster header will be elected by node density of the Group. Also, we evaluate the performance of this scheme, and show that this proposed scheme improves network lifetime in Zigbee environment.
A load-sharing algorithm must deal with load imbalance caused by characteristics of a network and heterogeneity of nodes in Internet-based clustering systems. This paper has proposed the Efficient Load-Sharing algorithm. Efficient-Load-Sharing algorithm creates a scheduler based on the WF(Weighted Factoring) algorithm and then allocates tasks by an adaptive granularity strategy and the refined fixed granularity algorithm for better performance. In this paper, adaptive granularity strategy is that master node allocates tasks of relatively slower node to faster node and refined fixed granularity algorithm is to overlap between the time spent by slave nodes on computation and the time spent for network communication. For the simulation, the matrix multiplication using PVM is performed on the heterogeneous clustering environment which consists of two different networks. Compared to other algorithms such as Send, GSS and Weighted Factoring, the proposed algorithm results in an improvement of performance by 75%, 79% and 17%, respectively.
Performance scalability and storage scalability become important in a large scale cluster of wireless internet proxy cache servers. Performance scalability means that the whole performance of the cluster increases linearly according as servers are added. Storage scalability means that the total size of cache storage in the cluster is constant, regardless of the number of cache servers used, if the whole cache data are partitioned and each partition is stored in each server, respectively. The Round-Robin based load balancing method generally used in a large scale server cluster shows the performance scalability but no storage scalability because all the requested URL data need to be stored in each server. The hashing based load balancing method shows storage scalability because all the requested URL data are partitioned and each partition is stored in each server, respectively. but, it shows no performance scalability in case of uneven pattern of client requests or Hot-Spot. In this paper, we propose a novel dynamic hashing method with performance and storage scalability. In a time interval, the proposed scheme keeps to find some of requested URLs allocated to overloaded servers and dynamically reallocate them to other less-loaded servers. We performed experiments using 16 PCs and experimental results show that the proposed method has the performance and storage scalability as different from the existing hashing method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.