• Title/Summary/Keyword: 클러스터 분할

Search Result 255, Processing Time 0.039 seconds

Recovery Management of Split-Brain Group in Highly Available Cluster file System $\textrm{SANique}^{TM}$ (고가용성 클러스터 파일 시스템 $\textrm{SANique}^{TM}$의 분할그룹 탐지 및 회복 기법)

  • 이규웅
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.505-517
    • /
    • 2004
  • This paper overviews the design details of the cluster file system $\textrm{SANique}^{TM}$ on the SAN environment. $\textrm{SANique}^{TM}$ has the capability of transferring user data from shared SAN disk to client application without control of centralized file server. We, especially, focus on the characteristics and functions of recovery manager CRM of $\textrm{SANique}^{TM}$. The process component for failure detection and its overall procedure are described. We define the split-brain problem that cannot be easily detected in cluster file systems and also propose the recovery management method based on SAN disk in order to detect and solve the split-brain situation.

  • PDF

A fuzzy cluster validity index for the evaluation of Fuzzy C-Means algorithm (최적 클러스터 분할을 위한 FCM 평가 인덱스)

  • 김대원;이광현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.374-376
    • /
    • 2003
  • 본 논문에서는 Fussy C-Means (FCM) 알고리즘에 의해 계산된 퍼지 클러스터들에 대한 평가 인덱스를 제안한다. 제안된 인덱스는 퍼지 클러스터들간의 인접성(inter-cluster proximity)을 이용한다. 클러스터 인접성을 도입함으로써 클러스터간의 중첩 정도를 계산할 수 있다. 따라서, 인접성 값이 낮을수록 클러스터들은 공간에 잘 분포하게 됨을 알 수 있다. 다양한 데이터 집합에 대한 실험을 통해서 제안된 인덱스의 효율성과 신뢰성을 검증하였다.

  • PDF

A Secure Cluster Formation Scheme in Wireless Sensor Networks (무선 센서 네트워크에서 안전한 클러스터 구성 방안)

  • Wang, Gi-Cheol;Cho, Gi-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.84-97
    • /
    • 2012
  • In wireless sensor networks, cluster structure brings on many advantages such as load balancing, energy saving, and distributed key management, and so on. To transform a physical network into the cluster structure, sensor nodes should invoke a cluster formation protocol. During the protocol operation, if some nodes are compromised and they do not conform to the protocol, an inconsistency of membership in a cluster happen. This splits the cluster and consequently increases the number of clusters and decreases the number of members in the cluster. In this paper, we propose a scheme which well copes with such a problem. First, our scheme generates two hop clusters where hop distance between any two nodes is at most two. Besides, our scheme employs verification of two hop distant nodes to prevent the cluster split induced by compromised nodes. Last, our scheme mainly employs broadcast transmissions to reduce energy consumption of nodes. Simulation results have proven that our scheme reduces the number of clusters and more secure and energy-efficient than other scheme.

A Study on Region matching method for Region-based Image Retrieval (영역 기반 이미지 검색을 위한 영역 매칭 방법에 관한 연구)

  • 추연웅;최기호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.155-158
    • /
    • 2002
  • 본 논문은 영역기반의 영상 검색을 위해 향상된 영역 매칭 알고리즘을 구현하고자 한다. 최근의 Mpeg-7표준은 객체 기반의 영상처리를 특징으로 하고 있으며, 객체 기반의 영상 처리방법들에서 가장 대표적인 방법인 영역기반 검색 방법은 영역 분할과 특징 추출, 그리고 영역매칭을 통한 유사도 측정에 따른 검색으로 나뉘어 진다. 본 논문에서는 영상을 분할한 후 분할된 영역들에 대한 특징을 추출 하고, 추출된 특징들을 다차원 특징 공간에서의 클러스터로 구성한다. 그리고 구성된 클러스터들을 인접한 중심을 가진 특징 그룹화 하여 특징 그룹 중심간의 거리차를 이용하여 질의 이미지와 검색 이미지의 유사도를 측정하는 영역 매칭 방법을 제안한다.

  • PDF

A Partition Mechanism of Server Nodes for SLA in Web Server Cluster (웹 서버 클러스터에서 차별화된 서비스 제공을 위한 서버 노드의 분할 기법)

  • 장인재;최창열;박기진;김성수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04d
    • /
    • pp.554-556
    • /
    • 2003
  • 최근 웹 서비스가 다양한 컨텐츠와 전자상거래 둥 비즈니스와 관련된 서비스로 변화함에 따라 대용량 서비스뿐만 아니라 고품질 서비스(QoS)를 제공하기 위한 연구가 진행되고 있다. 웹 서버 클러스터에서도 서버 성능 향상과 함께 005를 제공하기 위한 차별화된 서비스가 필요하다. 본 논문에서는 사용자 계층별로 차별화된 서비스를 제공하기 위해서 서버 노드를 동적으로 분할하는 기법을 제안한다.

  • PDF

Segmentation of MR Brain Image Using Scale Space Filtering and Fuzzy Clustering (스케일 스페이스 필터링과 퍼지 클러스터링을 이용한 뇌 자기공명영상의 분할)

  • 윤옥경;김동휘;박길흠
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.339-346
    • /
    • 2000
  • Medical image is analyzed to get an anatomical information for diagnostics. Segmentation must be preceded to recognize and determine the lesion more accurately. In this paper, we propose automatic segmentation algorithm for MR brain images using T1-weighted, T2-weighted and PD images complementarily. The proposed segmentation algorithm is first, extracts cerebrum images from 3 input images using cerebrum mask which is made from PD image. And next, find 3D clusters corresponded to cerebrum tissues using scale filtering and 3D clustering in 3D space which is consisted of T1, T2, and PD axis. Cerebrum images are segmented using FCM algorithm with its initial centroid as the 3D cluster's centroid. The proposed algorithm improved segmentation results using accurate cluster centroid as initial value of FCM algorithm and also can get better segmentation results using multi spectral analysis than single spectral analysis.

  • PDF

A Cluster Validity Index Using Overlap and Separation Measures Between Fuzzy Clusters (클러스터간 중첩성과 분리성을 이용한 퍼지 분할의 평가 기법)

  • Kim, Dae-Won;Lee, Kwang-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.455-460
    • /
    • 2003
  • A new cluster validity index is proposed that determines the optimal partition and optimal number of clusters for fuzzy partitions obtained from the fuzzy c-means algorithm. The proposed validity index exploits an overlap measure and a separation measure between clusters. The overlap measure is obtained by computing an inter-cluster overlap. The separation measure is obtained by computing a distance between fuzzy clusters. A good fuzzy partition is expected to have a low degree of overlap and a larger separation distance. Testing of the proposed index and nine previously formulated indexes on well-known data sets showed the superior effectiveness and reliability of the proposed index in comparison to other indexes.

Video Segmentation Using a $color-x^2$ intensity histogram-based FCM Clustering (컬러-$x^2$ 명도 히스토그램기반 FCM 클러스터링을 이용한 비디오 분할)

  • Lee, Ji-Hyun;Kang, Oh-Hyung;Na, Do-Won;Rhee, Yang-Won
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.189-192
    • /
    • 2005
  • 비디오 분할의 목적은 같은 내용들을 가지는 프레임들의 순서를 표현하는 각 샷의 비디오 순서 분할을 위한 것이다. 그리고 색인에 대한 각 샷으로부터 키 프레임을 선택한다. 존재하는 비디오 분할 방법들은 2가지 그룹들로 분류될 수 있다. 먼저 경계값이 할당되어야만 하는 샷 전환 검출(SCD) 접근과 클러스터 수의 사전 지식이 요구되는 클러스터 접근이다. 본 논문에서는 컬러-$x^2$명도 히스토그램 기반 FCM(fuzzy c-means) 클러스터링 알고리즘을 사용하는 비디오 분할 방법을 제안하였다. 이 알고리즘은 앞에서 기술한 2가지 접근의 혼합이다. 그리고 이것은 두 가지 접근들의 결점을 극복하도록 설계 되었다. 실험 결과들은 컬러-$x^2$명도 히스토그램 기반 FCM 클러스링 알고리즘이 강건하고 비디오 시퀀스들의 다양한 형태들에 응용할 수 있다고 제안한다.

  • PDF

Efficient Parallel Spatial Join Method In Shared-Nothing Spatial Database Cluster (비공유 공간 데이터베이스 클러스터에서 효율적인 병렬 공간 조인 기법)

  • Kim, Jong-Hyun;Kim, Myung-Keun;Kim, Jae-Hong;Bae, Hae-Young
    • Annual Conference of KIPS
    • /
    • 2002.11c
    • /
    • pp.1871-1874
    • /
    • 2002
  • 최근 인터넷 환경에서 지리 정보 서비스를 제공받으려는 사용자들의 지속적인 증가로 인해 저비용의 여러 개의 단일 노드를 고속의 네트워크로 연결하여 고성능을 제공하는 클러스터 기반의 공간 데이터베이스에 대한 연구가 활발하게 진행되고 있다. 이러한 공간 데이터베이스 클러스터에서 사용자가 요구한 공간 질의를 빠르게 처리하기 위해서는 고비용의 공간 조인 연산을 효율적으로 처리하기 위한 기법이 요구된다. 본 논문에서는 비공유 공간 데이터베이스 클러스터 환경하에서 공간 조인 연산 수행 시 효율적인 병렬 처리를 위한 영역 분할 기법 및 병렬 공간 조인 기법을 제안한다. 기존의 병렬 공간 데이터베이스 시스템에서의 분할 기반 병렬 공간 조인 기법들은 병렬로 수행할 작업 분배 및 할당과 분할 경계선 상에 존재하는 공간 객체들에 대한 중복 조인 연산 및 중복 결과 제거 등의 추가적인 연산을 해야 한다는 문제점들이 있다. 제안된 기법은 공간 릴레이션들을 일정 영역들로 분할하여 비공유 공간 데이터베이스 클러스터의 각 노드에서 중복없이 저장, 관리하도록 하며 분할 영역의 경계선 상에 위치하는 공간 데이터에 대해서만 중복 저장을 허용하여 병렬 공간 조인 연산 시 누락되는 공간 데이터가 없도록 한다. 본 기법은 공간 조인 연산 시 병렬 처리를 위한 별도의 작업 할당 과정을 거치지 않고 각 노드에서 병렬적으로 공간 조인 연산을 수행하며, 분할 경계선 상에 존재하는 공간 객체들은 여과 과정을 거쳐 한번만 공간 조인이 수행되므로 중복 결과들을 제거하기 위한 별도의 연산이 필요없는 특징을 갖는다. Ad Hoc망의 위상변화에 대한 적응성을 높일 수 있도록 한다. SQL Server 2000 그리고 LSF를 이용하였다. 그리고 구현 환경과 구성요소에 대한 수행 화면을 보였다.ool)을 사용하더라도 단순 다중 쓰레드 모델보다 더 많은 수의 클라이언트를 수용할 수 있는 장점이 있다. 이러한 결과를 바탕으로 본 연구팀에서 수행중인 MoIM-Messge서버의 네트워크 모듈로 다중 쓰레드 소켓폴링 모델을 적용하였다.n rate compared with conventional face recognition algorithms. 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이

  • PDF

A Bayesian Validation Method based on Decision Tree for Evaluating Fuzzy Clusters of Gene Expression Data (유전자 발현 데이터의 퍼지 클러스터 평가를 위한 결정트리 기반의 베이지안 검증방법)

  • 유지호;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.262-264
    • /
    • 2004
  • 퍼지 클러스터링 방법은 일반적인 클러스터링 방법과는 달리 하나의 샘플이 다수의 집단에 속할 수 있으며 그 속하는 정도를 표현하여 보다 유연한 클러스터 분할의 분석을 가능하게 한다. 유전자 발현 데이터는 노이즈가 많고 공통된 기능을 가진 유전자들의 집단이 존재하기 때문에 퍼지 클러스터링을 사용하면 더욱 효율적으로 분석할 수 있다. 이러한 퍼지 클러스터링 방법에 있어서 중요한 것은 얼마나 분할이 정확하게 이루어졌으며 실제 데이터가 가지고 있는 분할과 결과가 얼마나 유사한가이다. 본 논문에서는 효과적인 유전자 클러스터의 평가를 위하여 베이지안 검증 방법을 제시하고, 결정트리로 생성된 규칙에 의하여 각 데이터의 특성에 따라 유연하게 검증하는 방법을 제안한다. 다양한 유전자 발현 데이터를 퍼지 c-means 알고리즘을 이용하여 클러스터링하고 제안하는 방법으로 검증한 결과, 그 유용성을 확인할 수 있었다.

  • PDF