• Title/Summary/Keyword: 클러스터 분할

Search Result 255, Processing Time 0.031 seconds

An Improved Location Data Management Scheme for GALIS Prototype (GALIS 프로토타입을 위한 위치 데이타 관리 기법)

  • Lee, Ho;Lee, Joon-Woo;Nah, Yun-Mook
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.211-213
    • /
    • 2005
  • 최근의 위치 측위 기술과 무선 통신 기술의 발전에 따라 위치 기반 서비스에 대한 관심이 크게 증가하고 있다. 기존의 단일 노드 기반 시스템으로는 처리하기 힘든 휴대폰 사용자와 같은 대용량의 객체를 처리하기 위해 제시된 클러스터 기반 분산 컴퓨팅 구조로 GALIS 아키텍처가 제안되었다. 본 논문에서는 제시한 프로토타입은 그동안 구현된 기존 GALIS 프로토타입보다 개선된 구조로 SLDS에서 Global $Cell\_ID$를 적용하여 노드의 분할 합병 시 발생할 수 있는 처리 비용을 감소시켰다. 또한 LLDS에서는 필터링을 통해 손실들 수 있는 위치 데이타 정보를 보다 신뢰할 수 있는 데이타로 만들기 위한 기능을 추가하여 질의 시 발생할 수 있는 여러 가지 상황을 대비할 수 있게 되었다.

  • PDF

A Method to Access Data for Spatial Operation in Parallel Distributed Processing System (병렬 분산 처리 시스템에서 공간 연산을 위한 데이터 접근 방안)

  • Kim, Jindeog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.442-444
    • /
    • 2016
  • 과거에 비해 비약적으로 생산되는 공간 데이터에 대한 처리를 위한 공간 연산은 빠른 처리 응답성을 요구하는 경우가 많다. 그래서 최근 하둡(Hadoop)과 같은 빅데이터 처리 시스템을 이용하여 처리하고자 하는 시도가 많다. 한편, 공간 조인은 데이터 분할(Partitioning)과 공간 색인의 이용 여부, 여과 단계와 정제 단계를 거치는 등 그 복잡도가 강한 공간 연산이다. 그래서 빅데이터 처리 시스템을 이용한 공간 조인의 처리 방식은 매우 다양하다. 그러나 지금까지 이러한 공간 조인의 처리 방식에 다른 리소스 활용에 대한 비교는 거의 없다. 이 논문에서는 다양한 공간 연산의 수행 방법에 따른 빅데이터 시스템 클러스터에서 데이터 전송 방식을 고찰하고 데이터 전송에 따른 네트워크 리소스의 효율적인 사용 방안을 제안하고자 한다. 구체적으로 단일할당과 다중할당 색인 기법의 비교, 파티셔닝 방법의 비교, 맵리듀스 시스템의 태스크 할당 방법에 따른 비교를 통해 다양한 연산 유형에 따른 공간 조인의 처리 방안 선정에 고려 요소를 제시하고자 한다.

  • PDF

Wine Label Detection Using Saliency Map and Mean Shift Algorithm (중요도 맵과 Mean Shift 알고리즘을 이용한 와인 라벨 검출)

  • Chen, Yan-Juan;Lee, Myung-Eun;Kim, Soo-Hyung
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.384-385
    • /
    • 2011
  • 본 논문은 중요도 맵과 Mean Shift 알고리즘을 이용하여 모바일 폰 영상 내의 와인 라벨 검출 방법을 제안한다. Mean Shift 알고리즘은 비모수적 클러스터링 기술로 클러스터의 수에 대한 사전 지식이 없이도 클러스터링이 가능한 알고리즘인데 실행 시간이 많이 필요한 단점이 있다. 이러한 문제를 해결하기 위해서 입력 칼라 와인 영상에 Saliency Map을 먼저 적용하고 영상의 두드러진 영역을 찾는다. 다음으로 Mean Shift 알고리즘을 이용한 분할 결과에서 얻은 칼라 마스크를 따라 빈도가 가장 높은 칼라 영역을 찾고 와인 라벨 영역을 검출한다. 실험결과를 통하여 제안된 방법을 모바일 폰을 이용하여 획득된 다양한 와인 영상의 라벨 영역을 효율적으로 검출할 수 있음을 볼 수 있다.

A Multiple-Way Partitioning of a Network When the Cost of the Net Which Connects K Subsets is K(K-1)/2 (K개의 집합에 연결이 있는 네트에 K(K-1)/2의 비용을 주는 경우의 네트워크의 다중 분할)

  • Jang, Woo-Choul;Kim, In-Ki;Kim, Kyung-Sik
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.20-26
    • /
    • 1994
  • In this paper, we propose an algorithm on partitioning a network into several subsets where the cost of a net which connects nodes in k subsets is given as k(k-1)/2 indicating the typical pattern of complete graphs. This problem is one of generalizations for multiple-way partitioning proposed by Sanchis. $^{[5]}$ Its solution can be applied to resource allocation problem in distributed systems. The proposed algorithm expanded the algorithm of Fiduccia and Mattheyses$^{[3]}$ to handle the multiple-way partitioning simultaneously. It has time and space complexity linear to the size of the network. To evaluate the performance of the proposed algorithm, we implemented also a traditional cluster growth method which groups connected nodes for nets, and compared experimental results with those of the proposed algorithm. The proposed algorithm shows some enhancement made.

  • PDF

ART2 Based Fuzzy Binarization Method with Low Information Loss (정보손실이 적은 ART2 기반 퍼지 이진화 방법)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1269-1274
    • /
    • 2014
  • In computer vision research, binarization procedure is one of the most frequently used tools to discriminate target objects from background in grey level binary image. Fuzzy binarization is a reliable technique in environment with high uncertainty such as medical image analysis by setting the threshold as the average of minimum and maximum brightness with triangle type fuzzy membership function. However, this technique is also known as contrast sensitive method thus its discrimination power is not so great when the image has low contrast difference between objects and backgrounds and suffer from information loss as a result. Thus, in this paper, we propose a fuzzy binarization using ART2 algorithm to handle such low contrast image analysis. Proposed ART2 algorithm is applied to determine the medium point of membership function in the fuzzy binarization paradigm. The proposed methods shows low information loss rate in our experiment.

Evolutionary Computation-based Hybird Clustring Technique for Manufacuring Time Series Data (제조 시계열 데이터를 위한 진화 연산 기반의 하이브리드 클러스터링 기법)

  • Oh, Sanghoun;Ahn, Chang Wook
    • Smart Media Journal
    • /
    • v.10 no.3
    • /
    • pp.23-30
    • /
    • 2021
  • Although the manufacturing time series data clustering technique is an important grouping solution in the field of detecting and improving manufacturing large data-based equipment and process defects, it has a disadvantage of low accuracy when applying the existing static data target clustering technique to time series data. In this paper, an evolutionary computation-based time series cluster analysis approach is presented to improve the coherence of existing clustering techniques. To this end, first, the image shape resulting from the manufacturing process is converted into one-dimensional time series data using linear scanning, and the optimal sub-clusters for hierarchical cluster analysis and split cluster analysis are derived based on the Pearson distance metric as the target of the transformation data. Finally, by using a genetic algorithm, an optimal cluster combination with minimal similarity is derived for the two cluster analysis results. And the performance superiority of the proposed clustering is verified by comparing the performance with the existing clustering technique for the actual manufacturing process image.

An Installation and Model Assessment of the UM, U.K. Earth System Model, in a Linux Cluster (U.K. 지구시스템모델 UM의 리눅스 클러스터 설치와 성능 평가)

  • Daeok Youn;Hyunggyu Song;Sungsu Park
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.691-711
    • /
    • 2022
  • The state-of-the-art Earth system model as a virtual Earth is required for studies of current and future climate change or climate crises. This complex numerical model can account for almost all human activities and natural phenomena affecting the atmosphere of Earth. The Unified Model (UM) from the United Kingdom Meteorological Office (UK Met Office) is among the best Earth system models as a scientific tool for studying the atmosphere. However, owing to the expansive numerical integration cost and substantial output size required to maintain the UM, individual research groups have had to rely only on supercomputers. The limitations of computer resources, especially the computer environment being blocked from outside network connections, reduce the efficiency and effectiveness of conducting research using the model, as well as improving the component codes. Therefore, this study has presented detailed guidance for installing a new version of the UM on high-performance parallel computers (Linux clusters) owned by individual researchers, which would help researchers to easily work with the UM. The numerical integration performance of the UM on Linux clusters was also evaluated for two different model resolutions, namely N96L85 (1.875° ×1.25° with 85 vertical levels up to 85 km) and N48L70 (3.75° ×2.5° with 70 vertical levels up to 80 km). The one-month integration times using 256 cores for the AMIP and CMIP simulations of N96L85 resolution were 169 and 205 min, respectively. The one-month integration time for an N48L70 AMIP run using 252 cores was 33 min. Simulated results on 2-m surface temperature and precipitation intensity were compared with ERA5 re-analysis data. The spatial distributions of the simulated results were qualitatively compared to those of ERA5 in terms of spatial distribution, despite the quantitative differences caused by different resolutions and atmosphere-ocean coupling. In conclusion, this study has confirmed that UM can be successfully installed and used in high-performance Linux clusters.

Three-dimensional Numerical Analysis of Detonation Wave Structures in a Square Tube (정사각관 내 데토네이션 파 구조의 삼차원 수치 해석)

  • Cho, Deok-Rae;Won, Su-Hee;Shin, Jae-Ryul;Lee, Soo-Han;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Three dimensional structures of detonation waves propagating in a square tube were investigated using a high resolution CFD code coupled with a conservation equation of reaction progress variable and an one-step irreversible reaction. The code were parallelized based on domain decomposition technique using MPI library. The computations were carried on an in-house Windows cluster with AMD processors. Three-dimensional unsteady analysis results in the smoked-foil records caused by the instabilities of the detonation waves, which showed the rectangular and diagonal modes of detonation instabilities depending on the initial condition of disturbances and the spinning detonation for case of small reaction constant.

Clustering Algorithm for Data Mining using Posterior Probability-based Information Entropy (데이터마이닝을 위한 사후확률 정보엔트로피 기반 군집화알고리즘)

  • Park, In-Kyoo
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.293-301
    • /
    • 2014
  • In this paper, we propose a new measure based on the confidence of Bayesian posterior probability so as to reduce unimportant information in the clustering process. Because the performance of clustering is up to selecting the important degree of attributes within the databases, the concept of information entropy is added to posterior probability for attributes discernibility. Hence, The same value of attributes in the confidence of the proposed measure is considerably much less due to the natural logarithm. Therefore posterior probability-based clustering algorithm selects the minimum of attribute reducts and improves the efficiency of clustering. Analysis of the validation of the proposed algorithms compared with others shows their discernibility as well as ability of clustering to handle uncertainty with ACME categorical data.

Ship Detection Using Visual Saliency Map and Mean Shift Algorithm (시각집중과 평균이동 알고리즘을 이용한 선박 검출)

  • Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.2
    • /
    • pp.213-218
    • /
    • 2013
  • In this paper, a video based ship detection method is proposed to monitor port efficiently. Visual saliency map algorithm and mean shift algorithm is applied to detect moving ships don't include background information which is difficult to track moving ships. It is easy to detect ships at the port using saliency map algorithm, because it is very effective to extract saliency object from background. To remove background information in the saliency region, image segmentation and clustering using mean shift algorithm is used. As results of detecting simulation with images of a camera installed at the harbor, it is shown that the proposed method is effective to detect ships.