• Title/Summary/Keyword: 클라우드-컴퓨팅

Search Result 1,403, Processing Time 0.024 seconds

Continuous Integration for Efficient IoT-Cloud Service Realization by Employing Application Performance Monitoring (효율적인 IoT-Cloud 서비스 실증을 위한 응용 성능 모니터링을 활용한 지속적인 통합)

  • Bae, Jeongju;Kim, Chorwon;Kim, JongWon
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.2
    • /
    • pp.85-96
    • /
    • 2017
  • IoT-Cloud service, integration of Internet of Things (IoT) and Cloud, is becoming a critical model for realizing creative and futuristic application services. Since IoT machines have little computing capacity, it is effective to attaching public Cloud resources for realizing IoT-Cloud service. Furthermore, utilizing containers and adopting a microservice architecture for developing IoT-Cloud service are useful for effective realization. The quality of microservice based IoT-Cloud service is affected by service function chaining which inter-connects each functions. For example, an issue with some of the functions or a bottleneck of inter-connection can degrade the service quality. To ensure functionality of the entire service, various test procedures considering various service environments are required to improve the service continuously. Hence in this paper, we introduce experimental realization of continuous integration based on DevOps and employ application performance monitoring for Node.js based IoT-Cloud service. Then we discuss its effectiveness.

Improving the Map/Reduce Model through Data Distribution and Task Progress Scheduling (데이터 분배 및 태스크 진행 스케쥴링을 통한 맵/리듀스 모델의 성능 향상)

  • Hwang, In-Sung;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.78-85
    • /
    • 2010
  • Map/Reduce is the programing model which can implement the Cloud Computing recently has been noticed. The model operates an application program processing amount of data using a lot of computers. It is important to plan the mechanism of separating the data in proper size and distributing that to a cluster consisted of computing node in efficient for using the computing nodes very well. Besides that, planning a process of Map phases and Reduce phases also influences the performance of Map/Reduce. This paper suggests the effectively distributing scheme that separates a huge data and operates Map task in the considering the performance of computing node and network status. And we make the Reduce task can be processed quickly through the tuning the mechanism of Map and Reduce task operation. Using the two Map/Reduce sample application, we experimented the suggestion and we evaluate suggestion considered it in how impact the Map/Reduce performance.

Design of Efficient Edge Computing based on Learning Factors Sharing with Cloud in a Smart Factory Domain (스마트 팩토리 환경에서 클라우드와 학습된 요소 공유 방법 기반의 효율적 엣지 컴퓨팅 설계)

  • Hwang, Zi-on
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2167-2175
    • /
    • 2017
  • In recent years, an IoT is dramatically developing according to the enhancement of AI, the increase of connected devices, and the high-performance cloud systems. Huge data produced by many devices and sensors is expanding the scope of services, such as an intelligent diagnostics, a recommendation service, as well as a smart monitoring service. The studies of edge computing are limited as a role of small server system with high quality HW resources. However, there are specialized requirements in a smart factory domain needed edge computing. The edges are needed to pre-process containing tiny filtering, pre-formatting, as well as merging of group contexts and manage the regional rules. So, in this paper, we extract the features and requirements in a scope of efficiency and robustness. Our edge offers to decrease a network resource consumption and update rules and learning models. Moreover, we propose architecture of edge computing based on learning factors sharing with a cloud system in a smart factory.

Study on the mechanism for the dynamic traversing of multiple firewalls using the concept of one-time master key (일회용 마스터 키 개념을 이용한 다중 방화벽 동적 통과 메커니즘 연구)

  • Park, Hyoung-Woo;Kim, Sang-Wan;Kim, Jong-Suk Ruth.;Jang, Haeng-Jin
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.5
    • /
    • pp.103-110
    • /
    • 2010
  • If an exterior computer wants to join the Grid/cloud computing platform for a while, all of the related firewalls' filtering rule should be immediately updated. As the platform of Internet application is gradually evolving into the Grid/Cloud environment, the R&D requirement for the dynamic traversing of the multiple firewalls by a single try is also increasing. In this paper, we introduce the new mechanism for the dynamic traversing of the multiple firewalls using the concept of the one-time master key that can dynamically unlock the tiers of firewalls simultaneously instead of the existed filtering rule based method like a lock management at each firewall. The proposed master keys are like one-time password, consisted of IP addresses, port numbers, and TCP's initial sequence numbers, and generated by end users not administrators. They're exchanged mutually in advance and used to make a hole at local-side firewalls for the other's packet incoming. Therefore, the proposed mechanism can function regardless of the number or type of firewalls.

  • PDF