• Title/Summary/Keyword: 클라우드 기술

Search Result 1,591, Processing Time 0.031 seconds

AI Fire Detection & Notification System

  • Na, You-min;Hyun, Dong-hwan;Park, Do-hyun;Hwang, Se-hyun;Lee, Soo-hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.63-71
    • /
    • 2020
  • In this paper, we propose a fire detection technology using YOLOv3 and EfficientDet, the most reliable artificial intelligence detection algorithm recently, an alert service that simultaneously transmits four kinds of notifications: text, web, app and e-mail, and an AWS system that links fire detection and notification service. There are two types of our highly accurate fire detection algorithms; the fire detection model based on YOLOv3, which operates locally, used more than 2000 fire data and learned through data augmentation, and the EfficientDet, which operates in the cloud, has conducted transfer learning on the pretrained model. Four types of notification services were established using AWS service and FCM service; in the case of the web, app, and mail, notifications were received immediately after notification transmission, and in the case of the text messaging system through the base station, the delay time was fast enough within one second. We proved the accuracy of our fire detection technology through fire detection experiments using the fire video, and we also measured the time of fire detection and notification service to check detecting time and notification time. Our AI fire detection and notification service system in this paper is expected to be more accurate and faster than past fire detection systems, which will greatly help secure golden time in the event of fire accidents.

Application Methods and Development Assessment Tools for Creative Convergence Education Programs for Elementary and Secondary Schools based on Hyper Blended Practical Model (하이퍼 블렌디드 실천모델 기반 초·중등 창의 융합 교육 프로그램 평가도구 개발 및 적용 방안)

  • Choi, Eunsun;Park, Namje
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.117-129
    • /
    • 2022
  • The ability to creatively pursue new knowledge and perspectives across various disciplines has established itself as a basic literacy for living in the 21st-century convergence era. With the development of various creative education programs, assessment tools that can objectively and systematically evaluate learners' academic achievement are also required. Therefore, this paper proposed the self assessment, peer assessment, creativity assessment, and reflection tool based on the hyper blended practical model as assessment tools for creative convergence education programs for elementary and secondary school students. The developed assessment tools attempted to develop more completed evaluation methods by modifying two items and deleting four items through validity tests. In addition, the evaluation tool was applied to 596 elementary and secondary school students nationwide, and the application results were analyzed through one-way ANOVA and Wordcloud system. As a result of the analysis, it was found that the self assessment and the reflection tool need to develop questions according to the grade group. In addition, we proposed to use these assessment tools in blended classes or various educational activities in the changing classroom environment. We hope that this paper provides implications for developing evaluation systems and tools for creative convergence education.

Georeferencing of GPR image data using HD map construction method (정밀 도로 지도 구축 방법을 이용한 GPR 영상 데이터 지오레퍼런싱)

  • Shin, Jinsoo;Won, Jonghyun;Lee, Seeyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.507-513
    • /
    • 2021
  • GPR (Ground Penetrating RADAR) is a sensor that inspects the pavement state of roads, sinkholes, and underground pipes. It is widely used in road management. MMS (Mobile Mapping System) creates a detailed and accurate road map of the road surface and its surroundings. If both types of data are built in the same area, it is efficient to construct both ground and underground spatial information at the same time. In addition, since it is possible to grasp the road and important facilities around the road, the location of underground pipelines, etc. without special technology, an intuitive understanding of the site is also possible, which is a useful tool in managing the road or facilities. However, overseas equipment to which this latest technology is applied is expensive and does not fit the domestic situation. LiDAR (Light Detection And Raging) and GNSS/INS (Global Navigation Satellite System / Inertial Navigation System) were synchronized in order to replace overseas developed equipment and to secure original technology to develop domestic equipment in the future, and GPR data was also synchronized to the same GNSS/INS. We developed software that performs georeferencing using the location and attitude information from GNSS/INS at the time of acquiring synchronized GPR data. The experiments were conducted on the road site by dividing the open sky and the non-open sky. The road and surrounding facilities on the ground could be easily checked through the 3D point cloud data acquired through LiDAR. Georeferenced GPR data could also be viewed with a 3D viewer along with point cloud data, and the location of underground facilities could be easily and quickly confirmed through GPR data.

Research Trends of Middle-aged Women' Health in Korea Using Topic Modeling and Text Network Analysis (텍스트네트워크분석과 토픽모델링을 활용한 국내 중년여성 건강 관련 연구 동향 분석)

  • Lee, Do-Young;Noh, Gie-Ok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.163-171
    • /
    • 2022
  • This study was conducted to understand the research trends and central concepts of middle-aged women' health in Korea. For the analysis of this study, target papers published from 2012 to 2021 were collected by entering the keywords of 'middle-aged woman' or 'menopausal woman'. 1,116 papers were used for analysis. The co-occurrence network of key words was developed and analyzed, and the research trends were analyzed through topic modeling of the LSD by dividing it into five-year units (2012-2016, 2017-2021), and visualized word cloud and sociogram were used. The keywords that appeared the most during the last 10 years were obesity, depression, body composition, stress, and menopause symptom. Five topics analyzed in the thesis data for 5 years from 2012 to 2016 were 'postmenopausal self-efficacy and satisfaction enhancement strategy', 'exercise to manage obesity and risk factors', 'intervention for obesity and stress', 'promotion of happiness and life management' and 'menopausal depression and quality of life' were confirmed. Five topics of research conducted for the next five years (2017-2021) were 'menopausal depression and quality of life', 'management of obesity and cardiovascular risk factors', 'life experience as a middle-aged woman', and 'life satisfaction and psychological well-being' and 'menopausal symptom relief strategy'. Through the results, the trend of research topics related to middle-aged women's health over the past 10 years have been identified, and research on health of middle-aged women that reflects the trend of the future should be continued.

Anomaly Detection Methodology Based on Multimodal Deep Learning (멀티모달 딥 러닝 기반 이상 상황 탐지 방법론)

  • Lee, DongHoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.101-125
    • /
    • 2022
  • Recently, with the development of computing technology and the improvement of the cloud environment, deep learning technology has developed, and attempts to apply deep learning to various fields are increasing. A typical example is anomaly detection, which is a technique for identifying values or patterns that deviate from normal data. Among the representative types of anomaly detection, it is very difficult to detect a contextual anomaly that requires understanding of the overall situation. In general, detection of anomalies in image data is performed using a pre-trained model trained on large data. However, since this pre-trained model was created by focusing on object classification of images, there is a limit to be applied to anomaly detection that needs to understand complex situations created by various objects. Therefore, in this study, we newly propose a two-step pre-trained model for detecting abnormal situation. Our methodology performs additional learning from image captioning to understand not only mere objects but also the complicated situation created by them. Specifically, the proposed methodology transfers knowledge of the pre-trained model that has learned object classification with ImageNet data to the image captioning model, and uses the caption that describes the situation represented by the image. Afterwards, the weight obtained by learning the situational characteristics through images and captions is extracted and fine-tuning is performed to generate an anomaly detection model. To evaluate the performance of the proposed methodology, an anomaly detection experiment was performed on 400 situational images and the experimental results showed that the proposed methodology was superior in terms of anomaly detection accuracy and F1-score compared to the existing traditional pre-trained model.

Exploring Issues Related to the Metaverse from the Educational Perspective Using Text Mining Techniques - Focusing on News Big Data (텍스트마이닝 기법을 활용한 교육관점에서의 메타버스 관련 이슈 탐색 - 뉴스 빅데이터를 중심으로)

  • Park, Ju-Yeon;Jeong, Do-Heon
    • Journal of Industrial Convergence
    • /
    • v.20 no.6
    • /
    • pp.27-35
    • /
    • 2022
  • The purpose of this study is to analyze the metaverse-related issues in the news big data from an educational perspective, explore their characteristics, and provide implications for the educational applicability of the metaverse and future education. To this end, 41,366 cases of metaverse-related data searched on portal sites were collected, and weight values of all extracted keywords were calculated and ranked using TF-IDF, a representative term weight model, and then word cloud visualization analysis was performed. In addition, major topics were analyzed using topic modeling(LDA), a sophisticated probability-based text mining technique. As a result of the study, topics such as platform industry, future talent, and extension in technology were derived as core issues of the metaverse from an educational perspective. In addition, as a result of performing secondary data analysis under three key themes of technology, job, and education, it was found that metaverse has issues related to education platform innovation, future job innovation, and future competency innovation in future education. This study is meaningful in that it analyzes a vast amount of news big data in stages to draw issues from an education perspective and provide implications for future education.

A Study on the Current Situation and Trend Analysis of The Elderly Healthcare Applications Using Big Data Analysis (텍스트마이닝을 활용한 노인 헬스케어 앱 사용 추이 및 동향 분석)

  • Byun, Hyun;Jeon, Sang-Wan;YI, Eun-Surk
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.5
    • /
    • pp.313-325
    • /
    • 2022
  • The purpose of this study is to examine the changes in the elderly healthcare app market through text mining analysis and to present basic data for activating elderly healthcare apps. Data collection was conducted on Naver, Daum, blog web, and cafe. As for the research method, text mining, TF-IDF(Term frequency-inverse document frequency), emotional analysis, and semantic network analysis were conducted using Textom and Ucinet6, which are big data analysis programs. As a result of this study, a total of six categories were finally derived: resolving the healthcare app information gap, convergence healthcare technology, diffusion media, elderly healthcare app industry, social background, and content. In conclusion, in order for elderly healthcare apps to be accepted and utilized by the elderly, they must have a good diffusion infrastructure, and the effectiveness of healthcare apps must be maximized through the active introduction of convergence technology and content development that can be easily used by the elderly.

A Case Study of Untact Lecture on Albert Camus' La Peste using Big Data (빅데이터를 활용한 『페스트』(알베르 카뮈) 비대면 문학 강의 운영 사례 연구)

  • MIN, Jinyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.59-65
    • /
    • 2021
  • This is a case study on the use of Albert Camus' La Peste, which has gained its popularity in today's generation of post-COVID as well as the use of big data analysis tools for major and elective classes. First, we asked students majoring in French to compare the use of vocabulary and the number of appearances for characters using big data analysis, for about 400 pages of the original text. As a result, we were able to confirm a similar relationship between Camus' Absurdism and the vocabulary used within La Peste, in addition to noting the heavy frequency of resistant characters. Students in elective classes were asked to read the literature in a Korean-translated version to determine the frequency of vocabulary and characters' appearances. Students were able to strongly relate to La Peste due to its commonality between COVID and the plague in the literature. We also received high levels of class satisfaction regarding the use of big data analysis tools. The students showed a positive response both towards choosing La Peste as the work of literature and using big data, the main tool in the Fourth Industrial Evolution. We were able to identify good results even in a non-contact environment, as long as the literature does not rely on traditional methods but rather lectures to reflect current situations.

A Study on Construction & Management of Urban Spatial Information Based on Digital Twin (디지털트윈 기반의 도시 공간정보 구축 및 관리에 관한 연구)

  • Lih, BongJoo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.1
    • /
    • pp.47-63
    • /
    • 2023
  • The Seoul Metropolitan Government is building and operating digital twin-based urban spatial information to solve various problems in the city and provide public services. Two essential factors to ensure the stable utilization of spatial information for the implementation of such a digital twin city are the latest and quality of the data. However, it is time-consuming and costly to maintain continuous updating of high-quality urban spatial information. To overcome this problem, we studied efficient urban spatial information construction technology and the operation, management, and update procedures of construction data. First, we demonstrated and applied automatic 3D building construction technology centered on point clouds using the latest hybrid sensors, confirmed that it is possible to automatically construct high-quality building models using high-density airborne lidar results, and established an efficient data management plan. By applying differentiated production methods by region, supporting detection of urban change areas through Seoul spatial feature identifiers, and producing international standard data by level, we strengthened the utilization of urban spatial information. We believe that this study can serve as a good precedent for local governments and related organizations that are considering activating urban spatial information based on digital twins, and we expect that discussions on the construction and management of spatial information as infrastructure information for city-level digital twin implementation will continue.

Efficient QoS Policy Implementation Using DSCP Redefinition: Towards Network Load Balancing (DSCP 재정의를 통한 효율적인 QoS 정책 구현: 네트워크 부하 분산을 위해)

  • Hanwoo Lee;Suhwan Kim;Gunwoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.715-720
    • /
    • 2023
  • The military is driving innovative changes such as AI, cloud computing, and drone operation through the Fourth Industrial Revolution. It is expected that such changes will lead to a rapid increase in the demand for information exchange requirements, reaching all lower-ranking soldiers, as networking based on IoT occurs. The flow of such information must ensure efficient information distribution through various infrastructures such as ground networks, stationary satellites, and low-earth orbit small communication satellites, and the demand for information exchange that is distributed through them must be appropriately dispersed. In this study, we redefined the DSCP, which is closely related to QoS (Quality of Service) in information dissemination, into 11 categories and performed research to map each cluster group identified by cluster analysis to the defense "information exchange requirement list" on a one-to-one basis. The purpose of the research is to ensure efficient information dissemination within a multi-layer integrated network (ground network, stationary satellite network, low-earth orbit small communication satellite network) with limited bandwidth by re-establishing QoS policies that prioritize important information exchange requirements so that they are routed in priority. In this paper, we evaluated how well the information exchange requirement lists classified by cluster analysis were assigned to DSCP through M&S, and confirmed that reclassifying DSCP can lead to more efficient information distribution in a network environment with limited bandwidth.