• Title/Summary/Keyword: 큰 변위

Search Result 776, Processing Time 0.028 seconds

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (II) - Bearing Capacity - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (II) - 지반 지지력 -)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moonkyung;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.267-275
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of the pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter and loading direction. As the results, the axial capacity of the composite pile was 1.9 times larger than that of the steel pipe pile and similar with that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was 1.46 times larger than that of the steel pile and 1.25 times larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 78% of that of the steel pile and about 53% of that of the concrete pile, which showed that the movement reduction effect of the composite pile was significant and enables the economical design of drilled shafts.

Analysis of Ground Movement During Diaphragm Well Panel Constructions in Sedimentary Marine Deposit (해성점토층에 실시된 지중연속벽 시공에 의한 지반의 변위 분석)

  • Lee Cheol-Ju
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.43-54
    • /
    • 2005
  • The ground movements during three. full-scale trial diaphragm wall (DW) panel constructions were monitored and analysed. The DW panels were constructed in reclaimed fill where sedimentary marine deposit and residual weathered soils are being consolidated. The monitoring data showed exceptionally large lateral ground movements of up to 293 mm near a trench due to the DW panel constructions, which is about 0.8$\%$ D, where D is the maximum excavation depth. It was observed that deliberate holding period of the trench resulted in a significant increase in the lateral ground movements of about 50-225$\%$. A pre-treatment of the marine deposit by installing a single line of jet grout columns around the trench prior to the excavation was found to be a very effective way of reducing the ground movements. The measured ground settlements were compared with some relevant case histories. DW panel constructions in sedimentary marine deposit are likely to cause maximum ground surface settlement up to 0.225$\%$ D.

Application and Verification of Coupled Analysis of Piled Piers (교량 말뚝기초 해석기법의 적용성 분석)

  • Won Jin-Oh;Jeong Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.123-134
    • /
    • 2005
  • A coupled three-dimensional pile group analysis method (YSGroup) was developed considering nonlinear pile head stiffness matrices and compared with other analytical methods (elastic displacement method, Group 6.0 and FBPier 3.0). In this method, a pile cap was modelled by four-node flat shell element, a pier was modelled using 3 dimensional beam element, and individual piles were modelled as beam-column elements. Through the comparative studies on a piled pie. subjected to lateral loads in linear soil, it was found that present method (YSGroup), elastic displacement method and Group 6.0 gave similar results of lateral pile head displacement, but FBPier 3.0 was estimated to show somewhat larger displacements than those from the three methods. Displacements of superstructure (pier), including nonlinear soil behavior, could be estimated by present method (YSGroup) and FBPier 3.0 because these two methods modelled the superstructure directly by finite element techniques. It was found that pile groups in pinned pile head condition had a tendency to cause excessive rotation of the pile cap.

Phase Conjugator for Retrodirective Array Antenna Applications (능동 역지향성 배열 안테나용 공액 위상변위기)

  • Chun Joong-Chang;Jeung Deuk-Soo;Lee Byung-Rho;Tack Han-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.134-138
    • /
    • 2005
  • In this paper, we have developed a new type of the microwave phase conjugator for the active retrodirective antenna array. The circuit topology is consisted of a 2-port structure to avoid the complexity of LO and RF signal combination and matching, using the cascade connection of two single-ended mixers. The operating frequencies are 4.0 GHz, 2.01 GHz and 1.99 GHz for LO, RF, and IF, respectively. Conversion loss is measured to be -7 dB and 1-dB compression point 15 dBm with the LO power of 9 dBm. For the most important parameter, the isolation between RE leakage and IF signal is as high as 25 dB.

Effect of Spatial Distribution of Geotechnical Parameters on Tunnel Deformation (지반 물성치의 공간적 분포에 따른 터널 변위 특성 분석)

  • Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.249-257
    • /
    • 2006
  • The spatial distribution of design parameters greatly affects tunnel behavior during and after construction, as well as in the long-term temporal responses. However, the tunnel design parameters commonly used in numerical modeling tend to be representative or average values of global-scale properties. Furthermore, the uncertainty and spatial variation of the design parameters increase as the tunnel scale increases. Consequently, the probability of failure also increases. In order to achieve structural stability in large-section tunnels, the design framework must take into consideration the quantitative effect of design parameter variations on tunnel behavior. Therefore, this paper suggests a statistical approach to numerical modeling to explore the effect of spatially distributed design parameters in a circular tunnel. Also, the effect of spatial variation in the lining strength is studied in this paper. The numerical results suggest that the deformation around the tunnel increases with an increase in the variation of the design parameters.

Design of Stroke Measurement System and Cylinder-type Capactive Sensor (실린더형 정전용량 센서 및 변위 측정시스템 설계)

  • Lee, Jae-gun;Lee, In-gon;Park, Sung-kyun;Hong, Ic-pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.910-912
    • /
    • 2015
  • In this paper, we designed the novel capacitive sensor and system for measuring the position of the piston in hydraulic cylinder. The magnetic or LVDT sensors have been widely used to measure the position of the piston because of its high accuracy, but these types of sensor are very expensive and have difficulty in use because of its complexity. To overcome these disadvantages, we studied the optimized non-contact capacitive sensor and designed detecting system for accurate measuring the location of piston in hydraulic cylinder. The proposed capacitive sensor and detecting system have the possibility of practical use for hydraulic cylinder through experiments.

  • PDF

Numerical Predictions of the Load-Displacement Curves of Rock-Socketed Concrete Piles

  • Kwon, Oh-Sung;Kim, Jeong-Hwan;Jeon, Kyung-Soo;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.151-160
    • /
    • 1999
  • The settlement limit concept is generally adopted as design criteria of rock-socketed pile foundations, therefore, the load-displacement$(\sigma-\sigma)$ behavior of the rock-socketed piles should be well understood at the design stage, which, however, is hard to achieve due to its complexity. To help this out, field pile load tests are executed on cast-in-situ concrete piles, first, to figure out the $\sigma$-$\delta$ behavior of rock-socketed piles. Next, the $\sigma-\sigma$ relations of the piles are simulated numerically using commercial package program(ELAC) varying a couple of input data which are sensitive in shaping the $\sigma$-$\delta$ curves. Finally, the relation between the best input data for the numerical simulations and the geotechnical field data are cultivated to generalize the numerical simulation procedures, which enables geotechnical engineers to predict the $\sigma$-$\delta$ behavior at the design stage, if appropriate geotechnical field data are provided.

  • PDF

Deformations of Cantilever Strips and Beam with Small Elastic Strains (작은 탄성 변형률 하의 고정-자유 지지된 스트립과 보의 변형)

  • 호광수;박기철;임세영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.572-582
    • /
    • 1989
  • Elastic deformations of an infinitely long strip and a beam loaded by uniform pressure upon their upper surfaces, with the fixed-free end dondition, are considered within the range of small strains. All local governing equations are satisfied up to first order in strains, and to take into account the higher order terms neglected in the local governing equations, the overall equilibrium is imposed exactly up to the leading order. The success of the approach relies upon the semi-inverse method and the decomposition of deformations in which the classical linear theory guides the solution. The solution bridges the gap between the two extremes-the classical solutions valid only for infinitesimal deformations and the solutions form the technical theories for deformations with large rotations. The solutions may be used to confirm the technical theories and to verify numerical solutions obtained from finite element analysis.

The Strain Corrections for Accuracy Improvement to Predict Large Deformation of Wings (날개 대변형 예측의 정확성 향상을 위한 변형률 보정)

  • Lee, Hansol;Kim, In-Gul;Park, Sunghyun;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • The information about the deformations of high-aspect-ratio wings is needed for the real-time monitoring of structural responses. Wing deformation in flight can be predicted by using relationship between the curvatures and the strains on the wing skin. It is also necessary to consider geometric nonlinearity when the large deformation of wing is occurred. The strain distribution on fixed-end is complex in the chordwise direction because of the geometric shape of fixed-wings on fuselages. Hence, the wing displacement can be diversely predicted by the location of the strain sensing lines in the chordwise direction. We conducted a study about prediction method of displacements regardless of the chordwise strain sensing locations. To correct spanwise strains, the ratio of spanwise strain to chordwise strain, Poisson's ratio, and the ratio of the plate strain to the beam strain were used. The predicted displacements using the strain correction were consistent with those calculated by the FEA and verified through the bending testing.

A Study on the Application of Ground Displacement Sensor by Rock Blasting Test (암반 발파시험을 통한 지중변위센서의 적용성 연구)

  • Lee, Seungjoo;Jeong, Woocheol;Lee, Eungbeom;Suk, Songhee;Lee, Kangil;Kim, Yongseong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.71-78
    • /
    • 2022
  • In this study, the applicability of underground displacement sensors was considered through rock blasting tests to develop a relatively inexpensive and efficient slope failure prediction system that can quickly detect the risk of slope failure in advance and issue predictions and warnings with accurate judgment. In the blasting experiment, the sensor located close to the blasting source showed a large displacement due to crushing inside the rock and the sensor located away from the blasting source showed a relatively small strain. This study confirmed that the wired and wireless type underground displacement sensor system can be applied to measure the behavior of the rock slope, and it can be used as a basic data for establishing an early warning system to predict slope failure.