DOI QR코드

DOI QR Code

The Strain Corrections for Accuracy Improvement to Predict Large Deformation of Wings

날개 대변형 예측의 정확성 향상을 위한 변형률 보정

  • Lee, Hansol (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, In-Gul (Department of Aerospace Engineering, Chungnam National University) ;
  • Park, Sunghyun (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Min-Sung (Agency for Defense Development)
  • Received : 2015.08.26
  • Accepted : 2015.12.14
  • Published : 2016.01.01

Abstract

The information about the deformations of high-aspect-ratio wings is needed for the real-time monitoring of structural responses. Wing deformation in flight can be predicted by using relationship between the curvatures and the strains on the wing skin. It is also necessary to consider geometric nonlinearity when the large deformation of wing is occurred. The strain distribution on fixed-end is complex in the chordwise direction because of the geometric shape of fixed-wings on fuselages. Hence, the wing displacement can be diversely predicted by the location of the strain sensing lines in the chordwise direction. We conducted a study about prediction method of displacements regardless of the chordwise strain sensing locations. To correct spanwise strains, the ratio of spanwise strain to chordwise strain, Poisson's ratio, and the ratio of the plate strain to the beam strain were used. The predicted displacements using the strain correction were consistent with those calculated by the FEA and verified through the bending testing.

큰 가로세로비를 가지는 유연날개의 변형정보는 구조 건전성 평가를 위한 실시간 모니터링에 필요하다. 비행 중인 날개 구조 대변형은 날개 외피의 변형률과 곡률의 관계식을 기반으로 한 비선형 변위 예측 알고리즘을 통해 예측될 수 있다. 그러나 동체에 고정된 날개의 기하학적인 형상으로 인하여 고정단 부근에서의 변형률 분포는 복잡한 양상을 나타내며, 변형률 센서가 부착된 센싱라인의 코드방향 위치에 따라 변위가 다르게 예측될 수 있다. 본 논문에서는 스팬방향 변형률의 보정을 통하여 변형률 센싱라인의 코드방향 위치에 관계없이 예측변위의 정확도를 향상시키는 연구를 수행하였다. 변형률 보정을 위하여 스팬방향 및 코드방향 변형률의 비, 재료의 포아송비, 보와 평판 모델의 변형률 비를 이용하였다. 보정된 변형률을 이용하여 예측한 변위는 해석변위와 잘 일치하였으며, 이를 실험을 통하여 검증하였다.

Keywords

References

  1. Jun, O. C., "Survey of Real-Time In-Flight Wing Deformation Measurements," Information and Control Symposium, Apr. 2012, pp.141-142.
  2. Jun, O. C, and Park, B. H., "Survey for the CLAS (Conformal Load-bearing Antenna Structures)", Korean Society for Aeronautical and Space Sciences Conference, Nov. 2007, pp. 865-868.
  3. Lockyer, A. J., Alt, K. H., Coughlin, D. P., Durham, M. D., and Kudva, J. N., "Design and development of a conformal load-bearing smart-skin antenna : overview of the AFRL Smart Skin Structures Technology Demonstration (S3TD)," SPIE Smart Structures and Materials, Vol. 3674, 1999, pp.410-424.
  4. Kim, M. S., Park, C. Y., Cho, C. M., and Yoon, J. H., "Flight Demonstration Test of a Smart Skin Antenna for Communication and Navigation," J. of The Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 7, 2014, pp. 567-575. https://doi.org/10.5139/JKSAS.2014.42.7.567
  5. Richards, L., Parker, A., Ko, W. L., and Piazza, A., "Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors," Space Sensors and Measurements Techniques Workshop, Aug. 2008.
  6. Kang, L. H., Kim, D. K., Rapp, S., Baier, H., and Han, J. H., "Dynamic Deformation stimation of Structures Using Fiber Optic Strain Sensors," Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 16, No. 12, 2006, pp. 1279-1285. https://doi.org/10.5050/KSNVN.2006.16.12.1279
  7. Park, S. H., Kim, I. G., Lee, H. S., and Kim, M. S., "Prediction for Large Deformation of Cantilever Beam Using Strains", J. of The Korean Society for Aeronautical and Space Sciences, Vol. 43, No. 10, 2015, pp. 156-165. https://doi.org/10.5139/JKSAS.2015.43.2.156
  8. Ko, W. L., Richards, W. L., and Tran, V. T., Displacement Theories for In-flight Deformed Shape Predictions of Aerospace Structures, NASA Technical Publication, Edwards, CA, 2007.