Journal of the Korea Society of Computer and Information
/
v.17
no.11
/
pp.133-140
/
2012
In this paper, we propose a music recommendation method considering users' tags by collaborative tagging in a social music site. Since collaborative tagging allows a user to add keywords chosen by himself to web resources, it provides users' preference about the web resources concretely. In particular, emotional tags which represent human's emotion contain users' musical preference more directly than factual tags which represent facts such as musical genre and artists. Therefore, to classify the tags into the emotional tags and the factual tags and to assign weighted values to the emotional tags, a tag ontology called UniTag is developed. After preprocessing the tags, the weighted tags are used to create user profiles, and the music recommendation algorithm is executed based on the profiles. To evaluate the proposed method, a conventional playcount-based recommendation, an unweighted tag-based recommendation, and an weighted tag-based recommendation are executed. Our experimental results show that the weighted tag-based recommendation outperforms other two approaches in terms of precision.
Recommender systems reduce information overload and enhance choice quality. This technology is used in many services and industry. Previous studies did not consider recommendation quantity and the repetitive recommendations of an item. This study is the first to examine recommender systems by considering recommendation quantity and repetitive recommendations. Only a limited number of items are displayed in offline stores because of their physical limitations. Determining the type and number of items that will be displayed is an important consideration. In this study, I suggest the use of a user-based recommender system that can recommend the most appropriate items for each store. This model is evaluated by MAE, Precision, Recall, and F1 measure, and shows higher performance than the baseline model. I also suggest a new performance evaluation measure that includes Quantity Precision, Quantity Recall, and Quantity F1 measure. This measure considers the penalty for short or excess recommendation quantity. Novelty is defined as the proportion of items in a recommendation list that consumers may not experience. I evaluate the new revenue creation effect of the suggested model using this novelty measure. Previous research focused on recommendations for customer online, but I expand the recommender system to cover stores offline.
Due to the rapid increase of available contents via the convergence of broadcasting and internet, the efficient access to personally preferred contents has become an important issue. In this paper, for recommendation scheme for TV programs using a collaborative filtering technique is studied. For recommendation of user preferred TV programs, our proposed recommendation scheme consists of offline and online computation. About offline computation, we propose reasoning implicitly each user's preference in TV programs in terms of program contents, genres and channels, and propose clustering users based on each user's preferences in terms of genres and channels by dynamic fuzzy clustering method. After an active user logs in, to recommend TV programs to the user with high accuracy, the online computation includes pulling similar users to an active user by similarity measure based on the standard preference list of active user and filtering-out of the watched TV programs of the similar users, which do not exist in EPG and ranking of the remaining TV programs by proposed rank model. Especially, in this paper, the BM (Best Match) algorithm is extended to make the recommended TV programs be ranked by taking into account user's preferences. The experimental results show that the proposed scheme with the extended BM model yields 62.1% of prediction accuracy in top five recommendations for the TV watching history of 2,441 people.
Yo Han Park;Jong Hyeok Mun;Jong Sun Choi;Jae Young Choi
KIPS Transactions on Computer and Communication Systems
/
v.13
no.1
/
pp.10-20
/
2024
As the online commerce market continues to expand with an increase of diverse products and content, users find it challenging in navigating and in the selection process. Thereafter both platforms and shopping malls are actively working in conducting continuous research on recommendations system to select and present products that align with user preferences. Most existing recommendation studies have relied on user data which is relatively easy to obtain. However, these studies only use a single type of event and their reliance on time dependent data results in issues with reliability and complexity. To address these challenges, this paper proposes a recommendation system that analysis user preferences in consideration of the relationship between various types of event data. The proposed recommendation system analyzes the correlation of multiple events, extracts weights, learns the recommendation model, and provides recommendation services through it. Through extensive experiments the performance of our system was compared with the previously studied algorithms. The results confirmed an improvement in both complexity and performance.
With the development of broadcasting technology from analogue to interactive digital, the number of TV channels and contents provided to audience is increasing in a rapid speed. In this multi-media and multi-channel world, it is difficult to adapt to the increase of TV channel numbers and their contents merely using remote controller to search channels. Due to this reason, EPG (Electronic Program Guide) has been one of the essential services providing convenience to audience. So EPG complying with European DVB-MHP specifications, which will be also our domestic standard, is proposed in this paper. In order to provide audiences with DiTV contents they preferred, we apply collaborative filtering algorithm to recommend contents according to preference value of audience group with similar preference. And we use JavaXlet application which is based on MHP to implement this EPG, while the result can be verified by OpenMHP emulator.
Although there were some technological developments in improving the collaborative filtering, they have yet to fully reflect the actual relation of the items. In this paper, we propose the recommendation system using associative web document classification by word frequency and ${\alpha}$-cut to address the short comings of the collaborative filtering. The proposed method extracts words from web documents through the morpheme analysis and accumulates the weight of term frequency. It makes associative rules and applies the weight of term frequency to its confidence by using Apriori algorithm. And it calculates the similarity among the words using the hypergraph partition. Lastly, it classifies related web document by using ${\alpha}$-cut and calculates similarity by using adjusted cosine similarity. The results show that the proposed method significantly outperforms the existing methods.
Park, Seong-min;Park, Jeong-soo;Lee, Yoon-kyu;Chae, Woo-Joon;Shin, Moon-sun
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.316-318
/
2019
Recently, healthy life has become an issue in an aging society, and the number of people who have been interested in continuous health care for better life is increasing. In this paper, we implemented a personalized recommendation systm to provide convenient healthcare management for user. The PHR (Personal Health Record) of user could be stored in the server along with health related information such as lifestyle, disease, and physical condition. The users could be classified into similar clusters according to the PHR profile in order to provide healthcare contents to the users who had similar PHR profile. K-Means clustering was applied to generate clusters based on PHR profile and ACDT(Ant Colony Decision Tree) algorithm was used to provide personalised recommendation of health information stored in knowledge base. The app system developed in this paper is useful for users to perform healthcare themselves by providing information on serious diseases and lifestyle habits to be improved according to the clusters classified by PHR profile.
Journal of the Korea Academia-Industrial cooperation Society
/
v.11
no.12
/
pp.5113-5119
/
2010
Anthropometry has been broadly explored in various fields including automobile industry, home electronic appliances, medical appliances and sports goods with aiming at reaching satisfaction to consumer's need and efficiency. However, current technologies to measure a human body still have barriers in which the methods mostly seem to be contingent on expensive devices such as scanner and digital measuring instruments and to be directly touchable to the body when obtaining body size.. Therefore, in this paper, we present a general method to automatically extract size of body from a real body image acquired from a camera and to utilize it into recommend systems including clothing and bicycle fitting. At first, Haar-like features and AdaBoost algorithm are employed to detect body position. Then features of body can be recognized using AAM. Finally clothing and bicycle recommending modules have been implemented and experimented to validate the proposed method.
Park, So-Hyun;Park, Young-Ho;Park, Eun-Young;Ihm, Sun-Young
Journal of Digital Contents Society
/
v.19
no.5
/
pp.871-880
/
2018
Recently, the technology of recommendation of POI (Point of Interest) related technology is getting attention with the increase of big data related to consumers. Previous studies on POI recommendation systems have been limited to specific data sets. The problem is that if the study is carried out with this particular dataset, it may be suitable for the particular dataset. Therefore, this study analyzes the similarity and correlation between stores using the user visit data obtained from the integrated sensor installed in Seoul and Songjeong roads. Based on the results of the analysis, we study the preference prediction system which recommends the stores that new users are interested in. As a result of the experiment, various similarity and correlation analysis were carried out to obtain a list of relevant stores and a list of stores with low relevance. In addition, we performed a comparative experiment on the preference prediction accuracy under various conditions. As a result, it was confirmed that the jacquard similarity based item collaboration filtering method has higher accuracy than other methods.
The roles and functions of domestic public libraries are diversifying, but various problems have emerged due to internally biased book lending. In addition, due to the 4th Industrial Revolution, public libraries have introduced a book recommendation system focusing on popular books, but the variety of books that users can access is limited. Therefore, in this study, the public library unborrowed book recommendation system was implemented limiting its spatial scope to Duryu Library in Daegu City to enhance the satisfaction of public library users, by using the loan records data (213,093 cases), user information (35,561 people), etc. and utilizing methods like cluster analysis, topic modeling, content-based filtering recommendation algorithm, and conducted a survey on actual users' satisfaction to present the possibility and implications of the unborrowed book recommendation system. As a result of the analysis, the majority of users responded with high satisfaction, and was able to find the satisfaction was relatively high in the class classified by specific gender, age, occupation, and usual reading. Through the results of this study, it is expected that some problems such as biased book lending and reduced operational efficiency of public libraries can be improved, and limitations of the study was also presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.