Abstract
In this paper, we propose a music recommendation method considering users' tags by collaborative tagging in a social music site. Since collaborative tagging allows a user to add keywords chosen by himself to web resources, it provides users' preference about the web resources concretely. In particular, emotional tags which represent human's emotion contain users' musical preference more directly than factual tags which represent facts such as musical genre and artists. Therefore, to classify the tags into the emotional tags and the factual tags and to assign weighted values to the emotional tags, a tag ontology called UniTag is developed. After preprocessing the tags, the weighted tags are used to create user profiles, and the music recommendation algorithm is executed based on the profiles. To evaluate the proposed method, a conventional playcount-based recommendation, an unweighted tag-based recommendation, and an weighted tag-based recommendation are executed. Our experimental results show that the weighted tag-based recommendation outperforms other two approaches in terms of precision.
본 논문에서는 소셜 음악 사이트에서 사용자들이 생성한 태그를 바탕으로 음악을 추천하는 기법을 제안한다. 협력적 태깅 시스템은 사용자가 직접 선정한 단어를 콘텐츠에 부여할 수 있도록 하므로, 사용자의 선호도를 구체적으로 파악할 수 있는 정보를 제공한다. 특히, 감정을 표현하는 감정 태그들은 음악 장르나 음악가와 같이 사실을 나타내는 사실 태그들과는 다르게 선호도를 훨씬 직접 표현하고 있다. 따라서 태그의 의미를 파악하여 감정 태그와 사실 태그로 분류하고, 감정 태그는 감정표현의 정도에 따라 가중치를 부여하기 위해서 UniTag라고 하는 태그 온톨로지를 개발하였다. UniTag 온톨로지를 이용하여 정제된 태그 집합은 사용자 프로파일 생성에 사용되며, 태그 기반 사용자 프로파일을 바탕으로 음악 추천 알고리즘을 수행하였다. 제안하는 추천 방법의 효율성을 평가하기 위해서, 전통적인 청취 횟수 기반 추천, 감정 태그 가중치를 고려하지 않은 추천, 그리고 감정 태그 가중치를 고려한 추천의 세 가지 추천 방법의 정확도와 재현율을 비교하였다. 실험 결과는, 감정 태그 가중치를 고려한 추천 방식이 정확도의 측면에서 다른 두 가지 방식보다 효율적이라는 것을 보여준다.