The key issues of recommendation systems provide the contents satisfying the interests of users for the huge amounts of contents over internet. The existing recommendation system use the algorithms considering the users' profiles and context information to enhance the exactness of a recommendation. However, the existing recommendation system can't satisfy the requirements of service providers because the business models of service providers is not considered. In this paper, we propose the mobile recommendation system using the composite contexts and the recommendation weights applying the business model of service providers. The proposed system retrieves the contents of the contents providers using composite context information and apply the recommendation weights to recommend the suitable contents for the business models of service providers. Therefore, we provide the contents satisfying the consumption value of users and the business models of service providers to mobile users.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.10a
/
pp.241-243
/
2014
In this study, that by applying the algorithm of collective intelligence in helping to select the teaching methods and learning methods of learner and teacher, develop a content recommendation system, the teacher and the learner promote effective learning, I have intended to And for this reason can be applied to education recommended system to be applied to a movie or shopping mall recently, at the time of selection, it is appropriate in accordance with the state, such as the level of the learner, learning environment, learners the theme of teaching and learning, and to provide a teaching method and learning method, the learner can to find the learning method appropriate for the user, and a more efficient, Professor system that can save time to design the teaching learning process I developed, The utility and accuracy of the learning content recommendation system developed finally, after the data is accumulated in the use of a continuous schedule of the learner and a teacher, would need to be validated through the rating.
This paper introduces a recommender system that is to recommend broadcast content. Our recommender system uses user's viewing history for personalized recommendations. Broadcast contents has unique characteristics as compared with books, musics and movies. There are two types of broadcast content, a series program and an episode program. The series program is comprised of several programs that deal with the same topic or story. Meanwhile, the episode program covers a variety of topics. Each program of those has different topic in general. Therefore, our recommender system recommends TV programs to users according to the type of broadcast content. The recommendations in this system are based on user's viewing history that is used to calculate content similarity between contents. Content similarity is calculated by exploiting collaborative filtering algorithm. Our recommender system uses java sparse array structure and performs memory-based processing. And then the results of processing are stored as an index structure. Our recommender system provides recommendation items through OPEN APIs that utilize the HTTP Protocol. Finally, this paper introduces the implementation of our recommender system and our web demo.
Proceedings of the Korea Database Society Conference
/
2001.06a
/
pp.362-368
/
2001
본 논문에서는 고객의 특성을 고려한 최적의 추천시스템을 개발하기 위하여 기존의 인구통계학적 특성에 따른 협동적필터링 기법의 추천 효율을 비교 분석하였다. 비디오에 대한 사용자 평가 값과 예측 값간의 추천 효율에 대한 비교실험을 통하여 상품에 대한 단순한 선호도만을 고려한 기존의 협동적필터링 방법에 의한 추천시스템의 문제점을 개선하여 추천된 상품이나 콘텐츠에 대한 개인별 추천 효율을 향상시키기 위한 모델을 제시하였다. 본 연구 결과를 이용하여 인터넷 비즈니스 분야에서 활발하게 도입되고 있는 eCRM 시스템에서 가장 중요한 요소인 고객들의 인구통계학적인 다양한 특성을 고려한 협동적필터링 기반의 추천시스템을 개발할 수 있으리라 기대한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.10a
/
pp.300-301
/
2016
This paper proposes customized recommendation algorithm to improve the QoS(quality of service) of sport for all sports content uses to user profile and team grade. The proposed recommendation module is based on user profile information, and it recommends suitable team contents to user with Euclidean distance algorithm and preference weights between teams.
Journal of the Korea Society of Computer and Information
/
v.20
no.5
/
pp.99-106
/
2015
This research is focused on the development of the proprietary database embedded in the OTT device, which is used for searching and indexing video contents, and also the development of the search algorithm in the form of the critical components of the interface application with the OTT's database to provide video query searching, such as remote control smartphone application. As the number of available channels has increased to anywhere from dozens to hundreds of channels, it has become increasingly difficult for the viewer to find programs they want to watch. To address this issue, content providers are now in need of methods to recommend programs catering to each viewer's preference. the present study aims provide of the algorithm which recommends contents of OTT program by analyzing personal watching pattern based on one's history.
Various characteristics of social network contents such as real-time, people relationship and big data can help to improve personalized recommender systems. Among them, 'people relationship' is a key factor of recommendation, so many personalized recommender systems utilizing it have been proposed. However, existing researches can not reflect personal tendency and are unable to provide precise recommendations in various domains, because they do not consider intimacy among people. In this paper, to solve these problems, we propose PReAmacy, a Personalized Recommendation Algorithm, considering intimacy among users and various characteristics of social network contents. Our experimental results indicate that not only the precision of PReAmacy is higher than that of existing algorithms, but intimacy is of great importance in PReAmacy.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.07a
/
pp.195-198
/
2015
최근 TV 서비스의 가입자 및 TV 프로그램 콘텐츠의 급격한 증가에 따라 빅데이터 처리에 적합한 추천 시스템의 필요성이 증가하고 있다. 본 논문은 사용자들의 간접 평가 데이터 기반의 추천 시스템 디자인 시, 누적된 사용자의 과거 이용내역 데이터를 저장하지 않고 새로 생성된 사용자 이용내역 데이터를 학습하는 효율적인 알고리즘이면서, 시간 흐름에 따라 사용자들의 선호도 변화 및 TV 프로그램 스케줄 변화의 추적이 가능한 토픽 모델링 기반의 알고리즘을 제안한다. 빅데이터 처리를 위해서는 분산처리 형태의 알고리즘을 피할 수 없는데, 기존의 연구들 중 토픽 모델링 기반의 추론 알고리즘의 병렬분산처리 과정 중에 핵심이 되는 부분은 많은 데이터를 여러 대의 기계에 나누어 병렬분산 학습하면서 전역변수 데이터를 동기화하는 부분이다. 그런데, 이러한 전역데이터 동기화 기술에 있어, 여러 대의 컴퓨터를 병렬분산처리하기위한 하둡 기반의 시스템 및 서버-클라이언트간의 중재, 고장 감내 시스템 등을 모두 고려한 알고리즘들이 제안되어 왔으나, 네트워크 대역폭 한계로 인해 데이터 증가에 따른 동기화 시간 지연은 피할 수 없는 부분이다. 이에, 본 논문에서는 빅데이터 처리를 위해 사용자들을 클러스터링하고, 클러스터별 제안 알고리즘으로 전역데이터 동기화를 수행한 것과 지역 데이터를 활용하여 추론 연산한 결과, 클러스터별 지역별 TV프로그램 시청 토큰 별 은닉토픽 할당 테이블을 유지할 때 추천 성능이 더욱 향상되어 나오는 결과를 확인하여, 제안된 구조의 추천 시스템 디자인의 효율성과 합리성을 확인할 수 있었다.
최근 국내의 콘텐츠 생산률이 증가함에 따라, 많은 사람들이 즐길 수 있는 콘텐츠들이 많아 졌다. 하지만 사람들은 많아진 콘텐츠로 인해, 오히려 원하는 정보를 빠른 시간에 얻는 것이 힘들어졌다. 이러한 문제를 해결하기 위해 다양한 방식의 새로운 서비스들이 제공 되고 있다. 추천 시스템 중에서 웹툰을 추천해주는 알고리즘으로 협업필터링 방법이 가장 많이 사용되고 있다. 협업필터링 방법에는 희박성과 확장성, 투명성의 문제점들을 가지고 있다. 따라서 본 논문에서는 협업 필터링 방법의 희박성 문제를 보완하고자 개인의 성향을 반영하여 효율이 좋은 웹툰 추천 시스템을 제안하고, 하둡 시스템에서 구현한다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.578-581
/
2020
제품을 추천하는 기능은 사용자의 콘텐츠 또는 제품 소비량에 직결되기에 다양한 인터넷 플랫폼에서 많은 관심을 받고 있다. 이러한 제품 추천 시스템의 성능은 다양한 머신러닝 알고리즘과 딥러닝의 발전에 의해 성능을 비약적으로 개선되어왔다. 하지만 여느 딥러닝과 머신러닝 알고리즘과 마찬가지로 추천 시스템들의 성능은 빅데이터의 품질에 따라 매우 민감한 영향을 받는다. 본 논문에서는 모바일 배달 플랫폼에서 사용자들의 리뷰 데이터들을 통해 딥러닝과 빅데이터를 사용하여 음식을 추천하는 방법을 제안한다. 또한 사용자들의 리뷰 데이터들을 정제하여 데이터의 품질을 높이는 과정을 추가하여 그 결과가 성능에 얼마만큼 영향을 미치는 지를 실험을 통하여 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.