경쟁이 심화되고 있는 인터넷 포털시장에서 지속적인 성장을 위해 인터넷 포털이미지와 장기지향성과의 관계를 살펴보고자 하였다. 구체적으로 인터넷 포털이미지가 장기지향성에 미치는 영향력과 만족도 및 추천의도와의 관계를 파악하고자 하였다. 실증분석결과 인터넷 포털사이트의 이미지평가속성은 정보제공성, 오락 및 부가서비스, 고객서비스, 편리성 등의 요인으로 도출되었다. 네 요인 모두 이용포털사이트에 대한 장기지향성에 유의한 영향을 미치는 것으로 나타났다. 특히, 정보제공성과 오락 및 부가서비스가 가장 높은 영향력을 미치는 것으로 나타났다. 그리고 장기지향성은 소비자의 만족도와 추천의도에 유의한 영향을 미치고 있으며, 해당 포털에 대한 만족도는 추천의도에도 유의한 영향을 미치고 있음이 확인되었다. 이러한 연구결과는 시장에서 차별적인 인터넷 포털의 경쟁전략을 수립하는데 유용한 기초자료가 될 것으로 생각된다.
최근 인터넷과 스마트 폰의 발달로 사용자들 사이의 관계를 통해 다양한 정보를 생성하고 공유할 수 있는 소셜 미디어 서비스가 활발히 이용되고 있다. 특히 정보의 양이 방대해지고 신뢰할 수 없는 정보가 증가함에 따라 사용자에게 필요한 정보를 제공해 줄 수 있는 전문가 추천 기법에 대한 연구들이 진행되고 있다. 본 논문에서는 사용자의 관심 분야, 인적 관계, 응답 품질을 고려한 전문가 추천 기법을 제안한다. 사용자의 관심 분야는 사용자가 소셜 네트워크상의 활동을 분석해 최신의 사용자의 관심 분야 지수를 판단한다. 사용자의 인적 관계는 소셜 네트워크상의 같은 관심분야의 사용자만을 추출하여 인적 관계를 구축하여 인적 관계 지수를 판단한다. 사용자의 응답 품질은 사용자의 응답 속도와 응답 내용을 고려하여 응답 품질 지수를 판단한다. 마지막으로 사용자의 관심 분야, 인적 관계, 응답 품질을 합하여 사용자의 전문가 지수를 판단하고 사용자의 질의를 분석하여 질의와 전문가 그룹을 매칭하여 전문가를 추천한다. 다양한 성능평가를 통해 제안하는 기법이 기존 기법에 비해 성능이 우수함을 보인다.
'실시간성', '사람들 간의 관계정보', '빅 데이터'와 같은 다양한 특성을 갖는 소셜 네트워크 콘텐츠는 개인화 추천 시스템의 성능 향상에 큰 도움이 되고 있다. 그 중 '사람들 간의 관계정보'가 가장 중요한 역할을 하기 때문에, 이를 활용한 다양한 연구가 진행되고 있다. 하지만 기존의 연구에서는 사람들간의 친밀도를 고려하지 않고 있어서 개인의 성향을 반영하기 어렵고 다양한 도메인에서 정확한 추천이 불가능하다. 본 논문은 기존 연구의 문제를 해결하기 위해 사용자간 친밀도를 측정하는 친밀도 알고리즘과 소셜 네트워크의 다양한 특성에 기반한 개인화 추천 알고리즘인 PReAmacy를 제안한다. 실험을 통해 PReAmacy가 기존의 알고리즘에 비해 높은 성능을 가지며 친밀도가 PReAmacy 알고리즘에 큰 비중을 차지한다는 것을 보였다.
본 연구 목적은 축제서비스 평가속성이 방문객 행동의도에 미치는 영향을 규명하고, 축제의 만족도 재방문 추천의도에 관한 연구를 통해서 시장전략수립 위한 개선방향을 제시하고자 한다. 본 연구는 다음과 같다. 첫째, 연구를 위해 2011년10월14일부터 10월16일까지 총360부를 배포하고 335부를 수집하여 그중 사용하지 않은 15부를 제외한 320부를 사용하였다. 둘째, 서비스평가요인 중에서 프로그램, 시설, 공연평가요인은 만족도와 재방문의도에 정(+)의 영향을 미치는 것으로 나타났다. 또한 추천의도에 있어서도 축제평가 모든 요인에서 정(+)의 영향을 보였다. 셋째, 인구통계학적 특성이 만족도, 재방문의도, 추천의도에 미치는 영향관계에 있어서, 만족도는 친구동반에 있어 정(+)의 영향을 미쳤으나, 학력, 소득에는 부(-)의 영향을 미치는 것으로 나타났다. 또한 거주지, 직업이 재방문에 정(+)의 영향을 미친 반면, 소득, 가족동반, 처음방문은 재방문에 부(-)의 영향을 미쳤다. 마지막으로 연령, 학력, 소득, 가족동반 또한 추천의도에 부(-)의 영향을 미쳤다.
위치 인식 기술의 발전 및 스마트 디바이스 사용의 활성화로 인해 위치 기반 서비스과 소셜 네트워크를 결합하여 사용자에게 정보를 공유하는 위치 기반 소셜 네트워크(LBSN: Location Based Social Network)이 활성화되고 있다. 위치 기반 소셜 네트워크에서 사용자의 체크인 기능을 이용하여 사용자가 가 흥미있어 할 만한 장소를 추천하는 연구가 활발히 이루어지고 있다. 본 논문은 위치기반 소셜 네트워크에서 시간과 사용자 활동을 고려한 장소 추천 기법을 제안한다. 제안하는 기법은 기존 논문에서 고려하지 못한 시간에 따른 사용자의 선호도 변화와 지역의 전문가, 희귀한 장소에 대한 사용자의 관심을 고려한다. 다시 말해, 사용자의 선호도 변화를 고려하기 위해 시간에 따른 체크인 이력을 사용하고 지역의 전문가를 판별하기 위해 사용자 활동 영역을 구분한다. 그리고 사용자가 선호하는 장소에 가중치를 주기 위하여 희귀한 장소를 고려한다. 다양한 성능평가를 통해 제안하는 기법이 기존 기법에 비해 성능이 우수함을 보인다.
4차 산업 혁명 시대의 도래에 따라 직업 환경의 변화가 가속화되고 있으며, 이와 함께 교육의 패러다임이 자유학기제와 고교학점제에 바탕을 둔 진로교육을 중심으로 변화하고 있다. 하지만, 학생들의 자율적인 진로 탐색을 지향하는 자유학기제 및 고교학점제의 정책적 목표와 달리, 진로교육 콘텐츠의 개발과 이용에 있어 교사 및 학생들의 한계가 존재하고, 이를 뒷받침할 에듀테크 기술 연구 역시 상대적으로 부족한 실정이다. 따라서 본 연구는, 교육 현장에서의 진로교육 실태를 바탕으로, 에듀테크 기술이 교과연계 진로교육과 관련해 갖춰야 할 요구조건을 세 가지로 정의하였다. 다음으로 데이터 기반 인공지능 기술을 통해, 진로탐색용 탐구주제와 고교 과목, 그리고 대학에서 수학 가능한 전공을 아우를 수 있는 데이터 시스템 및 인공지능 추천 모델을 제안하였다. 마지막으로 실험을 통해, 셋 인코딩-디코딩 기반 인공지능 추천 모델이 진로교육 콘텐츠 추천에서 만족할 만한 성능을 보이는 것을 확인하였고, 교육 현장에서의 실제 적용 결과 또한 만족스럽다는 것을 확인하였다.
최근 챗봇이 다양한 분야에 적용되어 좋은 성과를 보이면서 쇼핑몰 상품 추천 서비스에도 챗봇을 활용하려는 시도가 많은 이커머스 플랫폼에서 진행되고 있다. 본 논문에서는 사용자와 시스템간의 대화와 패션 이미지 정보에 기반해 사용자가 원하는 패션을 추천하는 챗봇 대화시스템을 위해, 최근 자연어처리, 음성인식, 이미지 인식 등의 다양한 AI 분야에서 좋은 성능을 내고 있는 트랜스포머 모델에 대화 (텍스트) 와 패션 (이미지) 정보를 같이 사용하여 추천의 정확도를 높일 수 있도록 개선한 멀티모달 기반 개선된 트랜스포머 모델을 제안하며, 데이터 전처리(Data preprocessing) 및 학습 데이터 표현(Data Representation)에 대한 분석을 진행하여 데이터 개선을 통한 정확도 향상 방법도 제안한다. 제안 시스템은 추천 정확도는 0.6563 WKT(Weighted Kendall's tau)으로 기존 시스템의 0.3372 WKT를 0.3191 WKT 이상 크게 향상시켰다.
TV나 인터넷을 통한 비디오 콘텐츠 제공 서비스는 소비자가 콘텐츠를 선택하면 해당 콘텐츠를 재생하여 콘텐츠를 소비하는 정형화된 방식에서 벗어나 다양한 형태로 부가가치를 부여하고자 하고 있다. 이는 비디오 콘텐츠 제공업자의 수익 확대에 대한 필요성과 비디오 콘텐츠 사용자들이 적극적으로 콘텐츠를 소비하는 것에서 한 발 나아가 다양한 방식으로 콘텐츠를 제작하고자 하는 욕구가 맞물려 그 유인이 확대되고 있다. 본고에서는 비디오 콘텐츠에 부가 가치를 부여하는 대표적인 방법인 비디오 콘텐츠의 상호작용성(interactivity), 비디오 콘텐츠 추천(recommendation), 콘텐츠 관련 부가정보 제공 등을 중심으로 비디오 콘텐츠에 부가 기능 혹은 서비스를 제공하는 사례를 살펴보고자 한다.
본 연구는 통신과 방송의 융합 매체로 국내 및 세계적으로 급속히 성장하고 있는 IPTV 서비스에 대한 지각된 서비스 품질과 품질 만족도의 관계, 정보기술 수용과 고객 만족도와의 관계를 살펴보았다. 서비스품질, 정보기술 수용, 고객만족도, 지속사용의도, 추천의도의 5가지 항목의 측정도구를 활용하여 IPTV 서비스 이용자를 대상으로 실증조사를 실시하였으며, 그 결과 지각된 서비스 품질과 유용성, 이용용이성이 고객만족도에 강한 영향을 주며, 지속사용의도와 추천의도에도 유의한 영향이 있는 것으로 나타났다. 특히 콘텐츠의 유용성에 대한 인식이 사용만족도에 큰 영향을 주는 것으로 나타나, 고객에게 콘텐츠의 가치를 높게 인식시키고 쉽게 이용할 수 있음을 알리는 것이 고객만족과 고객확보에 중요한 전략이 될 수 있음을 나타내었다.
추천 시스템은 고객의 데이터를 이용하여 개인 맞춤화된 상품을 추천한다. 추천 시스템은 협업 필터링, 콘텐츠 기반 필터링 그리고 이 두 가지를 합친 하이브리드 방법의 세 가지로 크게 나누어진다. 이 연구에서는 딥러닝 방법론에 기초한 오토인코더를 이용한 추천 시스템에 대한 소개와 그 모형들의 비교 연구를 진행한다. 오토인코더는 데이터 행렬에 0이 많은 경우의 문제를 효과적으로 다룰 수 있는 딥러닝 기반의 비지도학습 모형이다. 이 연구에서는 세 개의 실제 데이터를 이용하여 다섯 가지 종류의 오토인코더 기반 모형들을 비교한다. 처음의 세 개 모형은 협업 필터링에 속한 모형이고 나머지 두 개의 모형은 하이브리드 모형이다. 실제 데이터는 고객의 평점 데이터이고, 대부분의 평점이 없어서 희박성 비율이 높다는 특징이 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.