• Title/Summary/Keyword: 콘크리트 압축강도 추정

Search Result 173, Processing Time 0.028 seconds

A Study on the Application of Non-Destructive Testing Equation for the Estimation of Compressive Strength of High Strength Concrete (고강도콘크리트의 압축강도 추정을 위한 비파괴시험식의 적용성에 관한 연구)

  • Kim, Moo-Han;Choi, Se-Jin;Kang, Suk-Pyo;Kim, Jae-Hwan;Jang, Jong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.123-130
    • /
    • 2002
  • Recently, it is being studied on the high strength concrete in many laboratories and being applied to the construction field actually. But non-destruction testing equation that to be proposed about normal strength concrete in Japan has been using because the systematic study results for the estimation of compressive strength of high strength concrete do nit exist. So it is essential to suggest the non-destruction testing equation for the estimation of compressive strength of high strength concrete. This is an experimental study to analyze and investigate the non-destruction testing equation for the estimation of compressive strength of high strength concrete. The results are as follows; The relation between rebound number, pulse velocity and compressive strength of high strength concrete have lower coefficient than combined method of rebound number and pulse velocity. Also new non-destructive testing equation for the estimation on the compressive strength of high strength concrete was suggested in this study, and it is considered that these equations have possibility to be applied in domestic construction field.

A Study on the Early Evaluation of Concrete Strength by Hot Water Curing Method (콘크리트 강도(强度)의 조기판정(早期判定)에 관한 연구(研究))

  • Shin, Hyun Mook;Jeon, Chan Ki;Suh, Kwang Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.61-71
    • /
    • 1987
  • Accelerated strength testing is a available method for quality control of concrete. This paper presents the improved hot water ($70^{\circ}C$) methods and discusses how these methods can be adapted for predicting 28 day strength. The strength results have been analyzed by statistical techniques and correlation between early and 28 day strength are showed by prediction line. The test results show that the methods proposed in this paper are usable to predict the potential quality of concrete with low variation and good relationship between two strengths.

  • PDF

A Experimental Study on the Evaluation of Deteriorated Concrete Member Exposed One Side at High Temperature (고온에 일면 노출된 콘크리트부재의 손상깊이 평가를 위한 실험적 연구)

  • Lee, Joong-Won;Choi, Kwang-Ho;Hong, Kap-Pyo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.431-438
    • /
    • 2006
  • The determination of the depth of deteriorated concrete is one of the main problems in the structural assessment of concrete structures that have been subjected to a fire. This information is particularly important in order to optimize the future operations of repair/strengthening, or in decision-making concerning a possible demolition. The purpose of this study is to propose evaluation technique of damaged depth of concrete exposed at high temperature. In order to evaluate damaged depth of core picked at member under fire, the 24 specimens have been made with variables of concrete strength(20 MPa, 40 MPa, 60 MPa) and heating exposure condition in 600 and 800 for 2 hours. Color change analysis and water absorption after heating have been measured and split tensile stress test was performed to ka the residual compressive strength against the depth of specimen. The results show that the deeper of the depth from heating face, water absorption ratio is smaller and residual stress ratio is larger and the color of heated face is changed to red color. Using this technique at damage evaluation of fired structure, We evaluate damaged depth of member under fire and determine the reasonable strengthening range.

Assessment of Ultrasonic Pulse Velocity Method for Early Detection of Frost Damage in Concrete (콘크리트의 초기동해 진단을 위한 초음파 속도법의 적용 가능성 평가)

  • Moon, Sohee;Lee, Taegyu;Choi, Heesup;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.193-202
    • /
    • 2024
  • This research delves into the evaluation of the suitability of ultrasonic pulse velocity as a diagnostic tool for early detection of frost damage in concrete. The investigation involves the measurement of compressive strength and ultrasonic pulse velocity concerning the depth of freezing for individual mortar specimens, followed by an analysis of their microstructure and their interrelation. The findings indicate a consistent decrease in both compressive strength and ultrasonic pulse velocity with increasing freezing depth. Furthermore, a correlation between compressive strength and ultrasonic pulse velocity concerning the depth of early frost damage is established. Consequently, the study asserts the potential of utilizing the ultrasonic pulse velocity method for early detection of frost damage in concrete, with prospects for quantifying the depth of damage through further research endeavors.

합성 전단벽에 대한 대각 압축 응력장 접근법

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.5-6
    • /
    • 2010
  • In this study, assuming that there is a diagonal uniaxial compression field in combination with triangular homogeneous stress fields in the cracked concrete wall and a tensile stress of a steel plate occurs in the perpendicular to the direction of the diagonal compression field, an ultimate shear strength of a slender composite shear wall is estimated.

  • PDF

Evaluation on Fire Test for the Concrete Filled Steel Tube Column -Fire Damage Evaluation on Steel Tube and Concrete after a Fire Test- (콘크리트충전 강관기둥의 내화실험에 대한 고찰 -재하가열실험후의 강관 및 콘크리트 화재손상평가를 중심으로-)

  • Park, Ki-Chang;Choi, Sung-Mo;Kim, Dong-Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.759-767
    • /
    • 2000
  • In this study, the time dependent internal stress changes of a Concrete Filled Steel Tube(CFT) column during a fire test were quantitatively analyzed. The strain ratio of a CFT column on the different loads was measured by tensile strength tests in terms of yield strength, tensile strength average extensibility and elasticity modulus. To understand the internal material properties change of concrete in CFT column damaged due to a fire, the compressive strength and elastic modulus tests were measured on a core sample from the center of the steel tube after the fire test. The elastic modulus test measured the strain from the stress. To determine the fire temperature of the test material, a differential thermal analysis was done. From the tested result, the gained data were conducted and an analysis method was suggested. The purpose of this work is to suggest a basic data for structure regulation enactments of the internal fire design of CFT.

  • PDF

The Estimation of Surface Chloride Content and Durability of the Marine Concrete Bridges in South Coast (남해안 해상 콘크리트 교량의 표면염화물이온농도 및 내구성 평가)

  • Jung, Dae-Jin;Choi, Ik-Chang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.730-737
    • /
    • 2014
  • In this study, chloride content of marine concrete bridge at the south coast in 5~34years was calculated based on the measured data and the validity of the proposed value was evaluated. Also, correlation of existence of salt injury prevention coating, chloride content, carbonation depth and the compressive strength of marine concrete bridges were derived and relationship of the four was evaluated. According to the research results, surface chloride content value in the tidal zone proposed form KCI 2009 and value in the splash zone and atmospheric zone proposed form Cheong et al.(2005) was the most valid. Also, salt injury prevention coating of marine concrete bridges had the outstanding effect of preventing chloride content penetration, carbonation depth and reduction in the compressive strength. Compressive strength of concrete was reduced by the increase of carbonation depth and chloride content.

Compressive strength prediction of concrete using ground granulated blast furnace slag by accelerated testing (촉진양생법에 의한 고로슬래그 미분말 혼합 콘크리트의 압축강도 예측)

  • Kim, Yong Jic;Kim, Young Jin;Choi, Yun Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.91-98
    • /
    • 2009
  • Recently, production cost of ready mixed concrete has been increased due to the rising cost of raw materials such as cement and aggregate etc. cause by the upturn of oil price and increase of shipping charge. The delivery cost of ready mixed concrete companies, however, has been decreased owing to their excessive competition in sale. Consequently, ready mixed concrete companies began to manufacture the concrete by mixing ground granulated blast furnace slag(GGBF) and fly-ash in order to lower the production cost. Therefore, the objective of this study was to predict 28 days strength of GGBF slag concrete by early strength(warm and hot water curing method) for the sake of managing with ease the quality of ready mixed concrete. In experimental results, the prediction equation for 28 days compressive strength of GGBF slag concrete could be produced through the linear regression analysis of early strength and 28 days strength. In order to acquire the reliability, all mixture were repeated as 3 times and each mixture order was carried out by random sampling. The prediction equation for 28 days strength of GGBF slag concrete by 1 day compressive strength(accelerated testing) according to warm and hot water curing method won the good reliability.

  • PDF

A Study on the Evaluation of Compressive Strength of Concrete Using Hammer Type Nondestructive Testing Equipment (해머형 비파괴시험장비를 이용한 콘크리트의 압축강도평가에 관한 연구)

  • Kim, Ho;Kim, Guy-Yong;Hwang, Eui-Chul;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.65-66
    • /
    • 2018
  • As a result of this study, it was possible to derive the compressive strength curves of ordinary to ultra high strength concrete using the hammer type non - destructive testing equipment. In order to obtain reliable results, it is necessary to construct additional data. In addition, if reliability is ensured through construction site evaluation, it is considered that the application is possible on construction site.

  • PDF

Reliability Evaluation for Prediction of Concrete Compressive Strength through Impact Resonance Method and Ultra Pulse Velocity Method (충격공진법과 초음파속도법을 통한 콘크리트 압축강도 예측의 신뢰성 평가)

  • Lee, Han-Kyul;Lee, Byung-Jae;Oh, Kwang-Chin;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.18-24
    • /
    • 2015
  • Non-destructive testing (NDT) methods are widely used in the construction industry to diagnose the defects/strength of the concrete structure. However, it has been reported that the results obtained from NDT are having low reliability. In order to resolve this issue, four kinds of NDT test (ultrasonic velocity measurements by P-wave and S-wave and the impact resonance methods by longitudinal vibration and deformation vibration) were carried out on 180 concrete cylinders made with two kinds of mix proportions. The reliability of the NDT results was analyzed and compared through the measurement of the actual compressive strength of the concrete cylinders. The statistical analysis of the results was revealed that the ultrasonic velocity method by S-wave is having lowest coefficient of variation and also most capable of stable observation. Analytical equations were established to estimate the compressive strength of the concrete from the obtained NDT results by relating the actual compressive strength. Moreover the equation established by the ultrasonic velocity method by S-wave had the highest coefficient of determination. Further studies on the stability of non-destructive testing depending on various mixing conditions will be necessary in the future.