• Title/Summary/Keyword: 콘크리트 내화성능

Search Result 286, Processing Time 0.024 seconds

Fundamental Study on Improvement of Fire-Resistance and Field Application of Refractory Mortar of Tunnel Structures (터널의 내화성능 향상 및 내화모르타르 현장적용을 위한 기초 연구)

  • Kim, Min-Jeong;Kim, Dong-Jin;Lee, Sang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.537-540
    • /
    • 2008
  • Tunnel structures are constructed even longer and more extensive these days than they were in the past. Because of this reason, breaking out a large scale of fire in tunnel structures is frequently. Recently, a noticeable event is reported that the temperature of inside of tunnel rises significantly when an oil car detonated in the tunnel and it reached 1,350$^{\circ}$C. It did damage to people who used the tunnel at that time and caused many demaged parts of tunnel to recover. To improve a fire resistance of tunnel, many methods are studied focused refractory concrete and mortar. This study deals with refractory mortar and is a part of initial basic step. In this study mechanical properties are considered before fire resistance test. As result of test for examination of mechanical properties, it is considered that a consistency and strength of refractory mortar in this study are suitable to construct.

  • PDF

Study on Fire Resistance of Beams filled with Concrete at Web Through Temperature Analysis and Load-bearing Fire Tests (온도해석과 재하가열시험에 의한 콘크리트 충전 보부재의 내화성능평가에 관한 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.82-88
    • /
    • 2010
  • Major structural elements such as columns and beams are designed to withstand the vertical and horizontal loads. Futhermore, when the structural elements were engulfed with fire the structural stability should be stand without failure. The beams have been developed in aspects of structural stability but an evaluation of fire performance was not done. So the data of fire resistance performance of beams filled with concrete at web on H-section is not known. The purpose of this paper is to analyse the correlation between temperature analysis and fire test with the beams and to show the fire resistance performance with two methods.

Fire Resistance Performance of Fiber-Cocktail Reinforced 50 MPa High Strength Concrete (섬유혼입된 50 MPa 고강도 콘크리트의 내화성능)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Park, Jong-Heon
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.3
    • /
    • pp.55-60
    • /
    • 2009
  • After applying the fiber cocktail(polypropylene and steel fibers) into the mixture of high strength concrete with a compressive strength of 50 MP, the fire test was carried out on specimens in order to evaluate the fire resistance performance, such as possible explosive spalling, temperature distributions of concrete and rebar. According to an enforcement ordinance, four column specimens were exposed to the fire for 180 minutes based on the standard curve of ISO-834. No explosive spalling has been observed. The required minimum quantity of polypropylene to prevent explosive spalling is more than 0.57 kg per unit concrete volume. The comparing test results from temperature distributions of concrete and rebar has found that the difference of fiber quantity is insignificant.

  • PDF

Characteristics of Temperature Distribution of Axially Loaded CFT Column with Fire Protection (축하중을 받는 내화피복 CFT기둥의 온도분포 특성)

  • Kim, Hae-Soo;Yoon, Sung-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.78-85
    • /
    • 2010
  • When the fire occur, concrete filled steel tube(CFT) columns expected to form a much distinction in a fire resistance performance according to a kind of fire protection because the steel surface is directly exposed to high temperature. In this study, an experiment by three factors which were kind of fire protection, thickness of protection and time was performed to get the characteristics of temperature distribution types of CFT column with fire protection. As the result of this study, on a basis of heating temperature, spray protection was the most superior in a fire resistance performance, fireproof paint was next, and without fire protection was most inferior. In a heating time-location relationship, the temperature increased slowly on the surface of the concrete, but the temperature increased sharply on the surface of the steel.

An Experimental Study on the Application of Fireproof Panel in Tunnel Duct Slab (터널 풍도슬라브에 사용된 내화패널의 적용성에 관한 실험연구)

  • Woo Jin Choi
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.262-269
    • /
    • 2023
  • Purpose: In this study,fire-resistance test were executed to evaluate the effectiveness of the fireproof panel attached to the PSC slab in tunnel. Method: For the fire resistance test, the RWS curve was applied and the furnace of the KICT was used. Result: As a result of the experiment, the maximum temperature measured on the concrete surface of the PSC slab with the fireproof panel was 321.8℃, which was lower than the damage limit temperature of 380℃ for concrete. Also, at the t=25mm, the maximum temperature was 35.2℃, which was lower than the damage temperature of steel, 250℃. The use of precast fire resistance panel(t=30mm) improves fire resistance of PSC structures. Conclusion: As a result of the test, a reinforcement method for attached a fireproof panel in case of fire in a tunnel or an underground roadway is provided to protect a structure from fire. In the future, it is necessary to perform the static performance test of the slab to which the fireproof panel is attached, and to confirm the adhesion performance of the fireproof panel by performing the pull-off test and the fatigue test.

Fire Resistance Performance for Fiber Reinforced High Strength Concrete Column Member (폴리프로필렌 및 강섬유 보강 고강도 콘크리트 기둥부재의 내화성능)

  • Jang, Chang-Il;Lee, Sang-Woo;Choi, Min-Jung;Kim, Joon-Mo;Kim, Heung-Youl;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.457-460
    • /
    • 2008
  • This study evaluated fire resistance performance for polypropylene/steel fiber reinforced high strength concrete column. Full-size columns were constructed and tested with or without fibers using ISO-834 fire curve. As the result of test, non-fiber high strength concrete column specimen occurred serious spalling and indicated rapidly internal temperature increase. Specimen with polypropylene fiber occurred not spalling. Specimen with hybrid fiber occurred not spalling as well as does not propagated temperature propagation. Therefore, hybrid fiber reinforced column specimen indicated a good fire resistance performance than other cases.

  • PDF

New Fire Resistant Methods of RC Structures Using ECC (구조물의 내화공법에 대한 ECC 적용 가능성)

  • Kim, Jung-Hee;Chun, Byung-Il;Lee, Myung-Ho;Chung, Jae-Min;Ahn, Sang-Ro
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.961-964
    • /
    • 2008
  • Fire safety is one of the important factors to be examined when applying ECC to actual concrete structures. The purpose of this study is to confirm whether the fire resistance of ECC satisfies the fire resistant requirements in order to use the fire protection material in concrete structures. Employed temperature curve are HC and RABT criterion, which are severe in various criterion of fire temperature in concrete structures. The test results show that ECC did not undergo any deterioration of fire resistance nor cause explosive spalling, which had been anticipated due to the presence of organic fibers. With comparison of current concrete and fire-resistance materials, the experimental results of ECC shows the better fire resistance performance than the other.

  • PDF

Bending Tests of H steel-Partial Concrete Incased Composite Beams (H형강-국부 콘크리트 합성보지 휨 실험)

  • Kim, Sung-Hoon;Kim, Dae-Kon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.77-85
    • /
    • 2005
  • After the collapse of the World Trade Center in september 11, 2001 and due to the frequent fire-caused damages of buildings during earthquake attacks, social concerns have been increased for the fire proof of the structural members of buildings. Recently, researches have been conducted to improve the fire resistance for building members not by the traditional ways but by utilizing the fire-resisting characteristics of reinforced concrete and structural characteristics of H-steel. In this paper, laboratory tests were conducted in room temperature to investigate the structural performance of the composite beams, which were developed to improve the fire resistance, comprising with concrete incasement between upper and lower flanges of H steel. From the experimental results, the displacement ductility factors of $6\~8$ were obtained. The difference of flexural behavior ol H steel-partial concrete incased composite beams with various composite details seems to be minor. The amount of longitudinal rebars is the most influential factor for the flexural strength of the composite beams. Therefore, if this type of composite beams are selected for designing a building located in moderate seismic lone, identical beam size could be used in several stories of the building.

Fire Resistance Performance of High Strength Concrete with Fiber Types (섬유 종류에 따른 고강도 콘크리트의 내화성능에 관한 실험적 연구)

  • Kim, Jeong-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.223-229
    • /
    • 2014
  • In this study, the fire resistance of high strength concrete with organic fibers and polymer powder (PW) was investigated. Two types of the specimens of ${\phi}100{\times}200mm$ and $300{\times}300{\times}600mm$ sizes were prepared. As a result of the test, it was found that the fiber-to-PW mixing ratio of 1:1 achieved the highest fluidity. Further, it was found that the mixing ratios of PP 0.05% + PW 0.05%, PNY 0.05% + PW 0.05% was sufficient to protect the high strength concrete from spalling. For the mock-up specimens of $300{\times}300{\times}600mm$ size, if the required amounts of fibers were added in the concrete. the concrete spalling was resisted. Likewise, in the case of the polymix (PM) together with PW, all the tested specimens were satisfactory for fire resistance performance.