• Title/Summary/Keyword: 콘크리트 기둥

Search Result 1,160, Processing Time 0.035 seconds

Seismic Performance of Precast Beam-Column Joints with Thru-Connectors (관통형 연결재로 연결된 PC 보-기둥 맞댐 접합의 내진성능에 관한 실험적 연구)

  • Park, Soon-Kyu;Kim, Min-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.441-450
    • /
    • 2010
  • This is a preliminary study on the development of precast beam-column joints for dry construction methodology. Precast beam column joints with thru-connectors (BCJ_TC) using high strength bars or PS strands were developed and their seismic performance including strength degradation, stiffness degradation and energy dissipation capacity was experimentally evaluated. Test results showed that compressive failures at the end blocks of PC beam members occurred dominantly while PC columns including panel zones were free from any damage. However, the connections confined with CFRP at the end block showed much improved seismic performance than that of the unconfined connections. Connections with neoprene pad fillers between beam and column interfaces were better than the other connections in all the seismic performances except initial stiffness. To improve the seismic performances of BCJ_TC, compressive strength of the concrete at the end block need to be increased to compensate for the additional compressive stresses due to unbonded connectors and deformation of connectors should be controlled respectively.

Behavior of Column-Foundation Joint under Vehicle Impact (차량 충돌에 의한 기둥의 콘크리트 기초 접합부 거동 평가)

  • Kang, Hyun-Goo;Kim, Jin-Koo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.393-400
    • /
    • 2014
  • Structures are often subject to vehicle collision which can be accidental or terrorist attack. Previous research shows that the damage in major columns may result in progressive collapse of a whole building. This study investigates the performance of a steel column standing on a reinforced concrete footing subjected to a vehicle collision. The size and the axial load of the steel column are determined based on the assumption that it is the first story corner column in a typical three-story building with six meter span length. The finite element model of a eight-ton single unit truck provided by the NCAC (National Crash Analysis Center) is used in the numerical analysis. The finite element analysis is performed using the LS-DYNA, and the results show that the behavior of the column subjected to car impact depends largely on the column-foundation connection detail.

An Experimental Study on the Behaviours of Hollow CFT Column Subjected to Axial Load (중공 콘크리트충전 각형강관 기둥의 거동에 관한 연구 (I. 중심 압축실험))

  • Kim, Cheol-Hwan;Kim, Jong-Kil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.69-76
    • /
    • 2006
  • Concrete Filled Steel Tube (CFT) system is advantageous because it increases the load-carrying capacity without increasing the size of column. However CFT system has many benefits, it is not applied to field generally because of its heavyweight and difficulty of concrete filling method. As a solution to these problems, we proposed concrete filled steel tube column with hollow made by factory-manufactured PC method. The hollow concrete filled steel tube system is expected to obtain the high strength and high capacity of deformation despite it is a lightweight. This study deals with mechanical properties, strength and deformation, of hollow concrete filled steel tube subjected to axial load. 9 specimens were tested to examine mechanical properties closely, and the following results were obtained: All specimens basically showed higher initial rigidity and maximum strength with increased concrete filling rate. And most specimens showed almost linear behavior until around 80% of maximum strength regardless of filling rate, it is estimated that the elastic range is up to a half of the maximum strength which is the yield strength level.

  • PDF

An Experimental Study on the Flexural Behavior of Reinforced Concrete Columns Strengthened with Wire Rope and T-Shape Steel Plate units (와이어로프와 T형 플레이트에 의해 보강된 RC 기둥의 휨 거동에 대한 실험적 연구)

  • Sim, Jae-Il;Yang, Keun-Hyeok;Oh, Sung-Jin;Byun, Hang-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.153-156
    • /
    • 2008
  • The objective of the present study is to evaluate the flexural behavior of reinforced concrete columns externally strengthened with wire rope and T-shape steel plate units. Three strengened columns and a control unstrengthened column were tested under cyclic lateral load simultaneously subjected to a constant axial load. All columns had same section size, and the arrangement of longitudinal reinforcement and internal hoop. The spacing of wire rope range from 40 ${\sim}$ 80mm, which corresponds from 1.0 ${\sim}$ 0.5, respectively, times the minium amount of hoop specified in seismic design of ACI 318-05. Test results showed that the proposed unbonded-type strengthening procedure is very effective for improving the flexural ductility of reinforced concrete columns.

  • PDF

Performance Evaluation of Inelastic Rotation Capacity of Reinforced Concrete Beam-Column Connections (철근콘크리트 보-기둥 접합부의 비탄성 회전 능력에 대한 성능 평가)

  • Lee, Ki-Hak;Woo, Sung-Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 2007
  • This study summarizes the results of a research project aimed at investigating the inelastic rotation capacity of beam-column connections of reinforced concrete moment frames. A total of 91 test specimens for beam-column joint connections were examined in detail, and 28 specimens were classified as special moment frame connections based on the design and detailing requirements in the ACI 318-02 Provisions. Then the acceptance criteria, originally defined for steel moment frame connections in the AISC-02 Seismic Provisions, were used to evaluate the joint connections of concrete moment frames. Twenty-seven out of 28 test specimens that satisfy the design requirements for special moment frame structures provide sufficient strength and are ductile up to a plastic rotation of 0.03 rad. without any major degradation in strength. Joint shear stress, column-to-beam flexural strength ratio, and transverse reinforcement ratio in a joint all play a key role in good performance of the connections.

Study on Seismic Performance of RC Column with Super-Flexibility Membrane (고연성재 보강 철근콘크리트 기둥의 내진성능 연구)

  • Lee, Weon-Cheol;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.1-12
    • /
    • 2013
  • This study presents the evaluations of seismic performance and displacement ductility for two types of RC columns: existing RC column without SFM (Super Flexibility Membrane) and CSF (RC columns strengthened with SFM). After they are analyzed by the experiment as well as FEM, crack patterns and load-displacement curve of CSF by the former are shown to similar to those of CSF by the latter. The flexural cracks are dominant in CSF, whereas shear cracks in CNF (existing RC column without SFM). Displacement ductility of CSF is shown significantly to increase as well as ultimate displacement, compared to those of CNF. Therefore CSF can be replaced to CNF in order to increase the seismic performance and displacement ductility.

Seismic Performance of Internally Confined Hollow RC Column with Corrugated Steel Tube (파형강관 내부 구속 중공 철근 콘크리트 기둥의 내진 성능)

  • Han, Taek-Hee;Kim, Jong-Min;Kang, Jun-Suk;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.31-38
    • /
    • 2008
  • A column test was performed far a new-type column with a quasi static test. An internally confined hollow reinforced concrete column with a corrugated steel tube (ICH RC-CT column) was tested to evaluate its seismic performance. And also, a general solid RC column was tested fur the comparison. The test was performed as planned drift levels. The lateral displacements and the lateral loads of column specimens were measured during tests. From the test results, the ICH RC-CT column showed smaller energy absorbing capacity than a solid RC column but showed the almost equal energy ductility and equivalent viscous damping ratio to those of the solid RC column.

Flexural Test for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar (앵글과 철근을 조립한 PSRC 합성기둥의 휨 실험)

  • Eom, Tae-Sung;Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.535-547
    • /
    • 2012
  • PSRC column is a concrete encased steel angle column. In the PSRC column, the steel angles placed at the corner of the cross-section resists bending moment and compression load. The lateral re-bars welded to steel angles resist the column shear and the bond between the steel angle and concrete. In the present study, current design procedures in KBC 2009 were applied to the flexure-compression, shear, and bond design of the PSRC composite column. To verify the validity of the design method and failure mode, simply supported 2/3 scaled PSRC and correlated SRC beams were tested under two point loading. The test parameters were the steel angle ratio and lateral bar spacing. The test results showed that the bending, shear, and bond strengths predicted by KBC 2009 correlated well with the test results. The flexural strength of the PSRC specimens was much greater than that of the SRC specimen with the same steel ratio because the steel angles were placed at the corner of the column section. However, when the bond resistance between the steel angle and concrete was not sufficient, brittle failures such as bond failure of the angle, spalling of cover concrete, and the tensile fracture of lateral re-bar occurred before the development of the yield strength of PSRC composite section. Further, if the weldability and toughness of the steel angle were insufficient, the specimen was failed by the fracture of the steel angle at the weld joint between the angle and lateral bars.

Column Shortening of SRC Columns Considering the Differential Moisture Distribution (부등수분분포를 고려한 SRC 기둥의 축소량에 관한 연구)

  • Seol, Hyun-Cheol;Kim, Yun-Yong;Kwon, Seung-Hee;Kim, Han-Soo;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.29-36
    • /
    • 2006
  • Steel reinforced concrete(SRC) columns, which have been widely employed in high-rise buildings, exhibit a time-dependent behavior because of creep and shrinkage of concrete. This long-term behavior may cause a serious serviceability problem in structural systems, so it is very important to predict the deformation due to creep and shrinkage of concrete. However, it was found from the previous experimental studies that the long-term deformation of SRC columns was quite dissimilar from that of RC columns. A new method is required to quantitatively predict the long-term deformation of SRC columns. In this study, the causes of the discrepancy between the behaviors of RC and SRC columns are investigated and discussed. SRC columns exhibit a time-dependent relative humidity distribution in a cross section differently from that of reinforced concrete(RC) columns owing to the presence of a inner steel plate, which interferes with the moisture diffusion of concrete. This relative humidity distribution may reduce the drying shrinkage and the drying creep in comparison with RC columns. Therefore it is suggested that the differential moisture distribution should be taken into account in order to reasonably predict column shortening of SRC columns.

Axial Behavior of Reinforced Concrete Columns Externally Strengthened with Unbonded Wire Rope and T-Shaped Steel Plate (와이어로프와 T 강판으로 비부착 보강된 철근콘크리트 기둥의 중심 축하중 거동)

  • Yang, Keun-Hyeok;Sim, Jae-Il;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.221-229
    • /
    • 2008
  • An improved unbonded-type column strengthening procedure using wire rope and T-shaped steel plate units was proposed. Eight strengthened columns and an unstrengthened control column were tested under concentric axial load. The main variables considered were the volume ratio of wire rope and the flange width and configuration of T-shaped steel plates. Axial load capacity and ductility ratio of columns tested were compared with predictions obtained from the equation specified in ACI 318-05 and those of conventionally tied columns tested by Chung et al., respectively. In addition, a mathematical model was proposed to evaluate the complete stress-strain relationship of concrete confined by the wire rope and T-plate units. Test results showed that the axial load capacity and ductility of columns increased with the increase of the volume ratio of wire rope and the flange width of T-plates. In particular, at the same lateral reinforcement index, a much higher ductility ratio was observed in the strengthened columns having the volume ratio of wire rope above 0.0039 than in the tied columns. A mathematical model for the stress-strain relationship of confined concrete using the proposed strengthening procedure is developed. The predicted stress-strain curves were in good agreement with test results.