• Title/Summary/Keyword: 코팅추진제

Search Result 21, Processing Time 0.034 seconds

Study on Coating Agent Composition for Adhesion of Solid Propellant(I) (고체 추진제 접착용 코팅제 조성 연구(I))

  • Jeong, Jae-Yun;Kim, Kyung Min;Park, Jung-Ho;Choi, Sung-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.84-90
    • /
    • 2020
  • The adhesion strength of two konds of solid propellants(primary propellant/secondary propellant) was studied by coating agent of adhesion composition composed of organic solvent, curing agent, and cure catalyst. The coating agent using FeAA, cure catalyst, resulted propellant breaking at more 0.14 wt% and interface breaking at less 0.10 wt%. The TPB cure catalyst of confirmed the result of the interface breaking immediately after curing of the secondary propellant. In addition, the coating agent using TPB was found to increase the adhesion strength between the primary propellant and the secondary propellant over time.

Study on the Temperature Independent Property of the Surface Coated Double Base Propellant (코팅제를 적용한 추진제의 온도둔감 특성 연구 (1))

  • Joo, Hyun-Hye;Joo, Hyung-Uk;Kwon, Tae-Soo;Jeong, June-Chang;Kwon, Sun-Kil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.529-531
    • /
    • 2012
  • The temperature coefficient of a gun propellant could be reduced by applying an appropriate surface coating material. The burning rates of those propellants do not very strongly depend on the propellant temperature. It is a good method to increase the muzzle velocity of gun ammunitions by utilizing the permissible maximum pressure in the gun barrel independent of the propellant temperature. During this study, properties of surface coated propellants were confirmed by results in tests of a closed bomb and 40mm Gun firing, and confirmed that production of coating propellant could be possible.

  • PDF

Study on Anti-oxidization Coating for Staged Combustion Cycle Rocket Engine (다단연소 사이클 엔진 적용을 위한 내산화 코팅에 관한 연구)

  • Kim, Young-June;Byon, Eung-Sun;Rhee, Byong-ho;Han, Yeoung-Min;Noh, Yong-Oh;Bae, Byung-Hyun;Hyun, Seong-Yoon;Cho, Hwang-Rae;Bang, Jeong-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.864-870
    • /
    • 2017
  • The propellants are burned in the pre-burner of the staged combustion cycle engine, and the resulting hot gas drives the turbine, and the turbine operates the turbo pump. The burned gas passing through the turbo pump is supplied to the combustor at high temperature and high pressure, where the gas is supplied in an excess of fuel or an excess of oxidant depending on the amount of fuel or oxidant. When the cycle works at oxidizer-rich staged combustion, its metal pipe can ignite or explode by the impact of even small particles. In this study, we develop the powder combinations for anti-oxidation coating through the analysis of other coating materials and establish the coating process.

  • PDF

A Study on Anti-oxidization Coating for Staged Combustion Cycle Rocket Engines (다단연소 사이클 엔진 적용을 위한 내산화 코팅에 관한 연구)

  • Kim, Young-June;Rhee, Byong-ho;Noh, Yong-Oh;Bae, Byung-Hyun;Hyun, Seong-Yoon;Cho, Hwang-Rae;Bang, Jeong-Suk;Byon, Eung-Sun;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.125-131
    • /
    • 2018
  • Some propellants in a liquid rocket engine are burned in the pre-burner of a staged combustion cycle engine, resulting hot gas drives the turbine. The burned gas passing through the turbine is supplied to the combustor at high temperature and pressure. The form of the gas can be fuel rich or oxidizer rich dependent upon the mixture ratio or the engine scheme. When the cycle works at oxidizer-rich condition, the metal pipes composing the engine can be ignited or even exploded by an impact of very a small particle. In this study, we developed the powder combination and processes for an anti-oxidation coating through the analysis of various coating materials.

Application of Computational Fluid Dynamics to Development of Combustion Devices for Liquid-Propellant Rocket Engines (액체추진제 로켓 엔진 연소장치 개발에 있어서의 전산유체역학 응용)

  • Joh, Miok;Kim, Seong-Ku;Han, Sang Hoon;Choi, Hwan Seok
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.150-159
    • /
    • 2014
  • This study provides a brief introduction to application of the computational fluid dynamics to domestic development of combustion devices for liquid-propellant rocket engines. Multi-dimensional flow analysis can provide information on the flow uniformity and pressure loss inside the propellent manifold, from which the design selection can be performed during the conceptual design phase. Multi-disciplinary performance analysis of the thurst chamber can also provide key information on performance-related design issues such as fuel film cooling and thermal barrier coating conditions. Further efforts should be made to develop numerical models to resolve the mixing and combustion characteristics of LOX/kerosene near the injection face plate.

Ignition of Solid Propellants at Subatmospheric Pressures (대기압 이하에서 고체 추진제의 점화 특성 향상 연구)

  • Kim In-Chul;Ryoo Baek-Neung;Jung Jung-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.383-386
    • /
    • 2006
  • Several HTPB/AP and HTPB/AP/HMX propellants were investigated experimentally for ignition characteristics in subatmospheric pressure. The threshold ignition pressure was 4psia for HTPB/AP composite propellant. The partial replacement of AP in HTPB/AP composite propellant by $5\sim15%$ of HMX, HNIW showed improvements in the threshold pressure was below 0.4psia. This appears to be due to the exothermic dissociation characteristics of HMX and HNIW at lower temperature $(\sim220^{\circ}C)$ than that of AP. The ignition substance B/KNO3 was coated thinly on the propellant surface for better ignition effect. As a result, ignition delay time of 15% was improved. NC is applied to $B/KNO_3$ ignition substance as a secondary binder and $NC-B/KNO-3$ suspension solution is coated to the propellant surface.

  • PDF

Catalytic decomposition of $N_2O$ to develop monopropellant thruster ($N_2O$ 단일 추진제 추력기 개발을 위한 촉매 분해 시험)

  • Jin, Jung-Kun;Kosdaulefov, Assylkhan;An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.269-272
    • /
    • 2009
  • Catalytic decomposition of nitrous oxide was investigated experimentally. Two noble metal catalyst (Pt, Ir) were chosen to decompose nitrous oxide. Each catalyst was tested with different chamber pressure and preheating temperature. Ir decomposed $N_2O$ at lower temperature ($230^{\circ}C$) and suitable for $N_2O$ decomposition. In addition, the minimum required preheating temperature decreased as the chamber pressure increased. However, deactivation of Ir catalyst was observed during the experiments.

  • PDF

Ignition of Solid Propellants at Subatmospheric Pressures (대기압 이하에서 고체 추진제의 점화 특성 향상 연구)

  • Kim, In-Cul;Ryoo, Baek-Neung;Jung, Jung-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.67-72
    • /
    • 2006
  • Several propellants were investigated experimentally for ignition characteristics in subatmospheric pressure. The threshold ignition pressure was 4 psia for HTPB/AP composite propellant. The partial replacement of AP in HTPB/AP propellant by $5{\sim}l5%$ of HMX, HNIW showed that the improvements in ignition delay was over 50% and the threshold pressure was below 0.4 psia. This appears to be due to the characteristics of HMX and HNIW exothermic dissociated at the temperature(${\sim}220^{\circ}C$) love. than that of AP. The ignition substance $B/KNO_3$ was coated thinly on the propellant surface for better ignition performance. As a result, ignition delay time of 15% was improved. NC is applied to $B/KNO_3$ ignition substance as a secondary binder and $NC-B/KNO_3$ suspension solution is coated to the propellant surface.

Fabrication and Thermophysical Properties of Nickel-coated Aluminum Powder by Electroless Plating (비전해 방법을 이용한 니켈 코팅 알루미늄 분말 제조 및 열물성 평가)

  • Lee, Sanghyup;Lim, Jihwan;Noh, Kwanyoung;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.9-17
    • /
    • 2014
  • In this study, in order to improve the ignitability of high energy aluminum powder, natural oxide films (alumina) were chemically removed, and instead nickel coat was applied. We used an electroless plating for nickel coating and confirmed quantitatively and qualitatively a time-dependent degree of nickel coating through analysis of surface by SEM/EDS. We also conducted element analysis by XRD and thermal properties by TGA/DSC in air oxidizer environment. There results explained the ignition enhancement mechanism of the nickel-coated aluminum powder in air. The difference between coated and un-coated aluminum powder, the effectiveness of coated powder has better ignitability.

Storability and Material Compatibility Test of Blended Hydrogen Peroxide Propellant (블렌딩 기법을 적용한 과산화수소 추진제의 저장성 및 재료 적합성 평가)

  • Lee, Jeong-Sub;Jang, Dong-Wuk;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.20-28
    • /
    • 2012
  • Blending method was applied to increase the performance of hydrogen peroxide which is called green propellant. 90 wt.% hydrogen peroxide was blended with ethanol which is less toxic fuel, and there was no storability decrease due to fuel addition. Inconel X750 and Tophet A showed good compatibility and high heat resistance, and SUS 316L was compatible. $Al_2O_3$, $Y_2O_3$, and $ZrO_2$, were coated on the material to improve heat resistance, and it was proved from endurance test that $Y_2O_3$ coating is not suitable and adhesive strength between coating and material is related with allowable temperature of material. Thruster test was performed to confirm the performance increase by blending method, and chamber temperature was $870^{\circ}C$ which is higher than $760^{\circ}C$ that is adiabatic chamber temperature of 90 wt.% hydrogen peroxide.