• Title/Summary/Keyword: 케이슨 절단

Search Result 4, Processing Time 0.021 seconds

Improved Estimation for Expected Sliding Distance of Caisson Breakwaters by Employment of a Doubly-Truncated Normal Distribution (이중절단정규분포의 적용을 통한 케이슨 방파제 기대활동량 평가의 향상)

  • Kim Tae-Min;Hwang Kyu-Nam;Takayama Tomotsuka
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.4
    • /
    • pp.221-231
    • /
    • 2005
  • The present study is deeply concerned with the reliability design method(Level III) for caisson breakwaters using expected sliding distance, and the objectives of this study are to propose the employment of a doubly-truncated normal distribution and to present the validity for it. In this study, therefore, the explanations are made for consideration of effects of uncertain factors, and a clear basis that the doubly-truncated normal distribution should be employed in the computation process of expected sliding distance by Monte-Carlo simulation is presented with introduction of the employment method. Even though only caisson breakwaters are treated in this paper, the employment of doubly-truncated normal distribution can be applied to various coastal structures as well as other engineering fields, and therefore it is expected that the present study will be extended in various fields.

A Case Study on the North Seawall Construction of Ulsan Newport (울산신항 북항 방파호안 축조공사 시공사례)

  • Yun, Gi-Seung;Jeong, Uk-Jin;Kim, Yong-Gyun;Hong, Jang-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.206-208
    • /
    • 2018
  • 울산신항의 활발한 개발로 인하여 기존에 설치되어 있던 온산항북방파제는 원래의 목적인 방파제로서의 기능은 사라지고, 울산항 3항로에 간섭된 지장물이 됨에 따라, 기존방파제의 철거를 수행하였으며 철거순서는 상치 콘크리트 깨기, 속채움 제거, 케이슨 절단 및 천공, 인양 및 제거, 케이슨 파쇄의 순서로 진행되었다. 특히, 파쇄한 콘크리트는 크라싱 작업을 통해 재생골재로 생산하였으며, 향후 신설케이슨의 속채움 재료로 재활용하는 것으로 하여 경제적 자원재활용에도 기여하고 있다.

  • PDF

Exceedance probability of allowable sliding distance of caisson breakwaters in Korea (국내 케이슨 방파제의 허용활동량 초과확률)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.495-507
    • /
    • 2009
  • The expected sliding distance for the lifetime of a caisson breakwater has a limitation to be used as the stability criterion of the breakwater. Since the expected sliding distance is calculated as the mean of simulated sliding distances for the lifetime, there is possibility for the actual sliding distance to exceed the expected sliding distance. To overcome this problem, the exceedance probability of the allowable sliding distance is used to assess the stability of sliding. Latin Hypercube sampling and Crude Monte Carlo simulation were used to calculate the exceedance probability. The doubly-truncated normal distribution was considered to complement the physical disadvantage of the normal distribution as the random variable distribution. In the case of using the normal distribution, the cross-sections of Okgye, Hwasun, and Donghae NI before reinforcement were found to be unstable in all the limit states. On the other hand, when applying the doubly-truncated normal distribution, the cross-sections of Hwasun and Donghae NI before reinforcement were evaluated to be unstable in the repairable limit state and all the limit states, respectively. Finally, the shortcoming of the expected sliding distance as the stability criterion was investigated, and we reasonably assessed the stability of sliding of caissons by using the exceedance probability of allowable sliding distance for the caisson breakwaters in Korea.

Uncertainty Analysis of Wave Forces on Upright Sections of Composite Breakwaters (혼성제 직립벽에 작용하는 파력의 불확실성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.258-264
    • /
    • 2011
  • A MCS technique is represented to stochastically analyze the uncertainties of wave forces exerted on the upright sections of composite breakwaters. A stochastical models for horizontal and uplift wave forces can be straightforwardly formulated as a function of the probabilistic characteristics of maximum wave height. Under the assumption of wave forces followed by extreme distribution, the behaviors of relative wave forces to Goda's wave forces are studied by the MCS technique. Double-truncated normal distribution is applied to take the effects of uncertainties of scale and shape parameters of extreme distribution into account properly. Averages and variances of relative wave forces are quantitatively calculated with respect to the exceedance probabilities of maximum design wave height. It is found that the averages of relative wave forces may be decreased consistently with the increases of the exceedance probabilities. In particular, the averages on uplift wave force are evaluated slightly larger than those on horizontal wave force, but the variations of coefficient of the former are adversely smaller than those of the latter. It means that the uncertainties of uplift wave forces are smaller than those of horizontal wave forces in the same condition of the exceedance probabilities. Therefore, the present results could be useful to the reliability based-design method that require the statistical properties about the uncertainties of wave forces.