• Title/Summary/Keyword: 컴퓨터 소프트웨어

Search Result 4,257, Processing Time 0.035 seconds

Development of Open Set Recognition-based Multiple Damage Recognition Model for Bridge Structure Damage Detection (교량 구조물 손상탐지를 위한 Open Set Recognition 기반 다중손상 인식 모델 개발)

  • Kim, Young-Nam;Cho, Jun-Sang;Kim, Jun-Kyeong;Kim, Moon-Hyun;Kim, Jin-Pyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.117-126
    • /
    • 2022
  • Currently, the number of bridge structures in Korea is continuously increasing and enlarged, and the number of old bridges that have been in service for more than 30 years is also steadily increasing. Bridge aging is being treated as a serious social problem not only in Korea but also around the world, and the existing manpower-centered inspection method is revealing its limitations. Recently, various bridge damage detection studies using deep learning-based image processing algorithms have been conducted, but due to the limitations of the bridge damage data set, most of the bridge damage detection studies are mainly limited to one type of crack, which is also based on a close set classification model. As a detection method, when applied to an actual bridge image, a serious misrecognition problem may occur due to input images of an unknown class such as a background or other objects. In this study, five types of bridge damage including crack were defined and a data set was built, trained as a deep learning model, and an open set recognition-based bridge multiple damage recognition model applied with OpenMax algorithm was constructed. And after performing classification and recognition performance evaluation on the open set including untrained images, the results were analyzed.

Data Modeling for Cyber Security of IoT in Artificial Intelligence Technology (인공지능기술의 IoT 통합보안관제를 위한 데이터모델링)

  • Oh, Young-Taek;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.57-65
    • /
    • 2021
  • A hyper-connected intelligence information society is emerging that creates new value by converging IoT, AI, and Bigdata, which are new technologies of the fourth industrial revolution, in all industrial fields. Everything is connected to the network and data is exploding, and artificial intelligence can learn on its own and even intellectual judgment functions are possible. In particular, the Internet of Things provides a new communication environment that can be connected to anything, anytime, anywhere, enabling super-connections where everything is connected. Artificial intelligence technology is implemented so that computers can execute human perceptions, learning, reasoning, and natural language processing. Artificial intelligence is developing advanced technologies such as machine learning, deep learning, natural language processing, voice recognition, and visual recognition, and includes software, machine learning, and cloud technologies specialized in various applications such as safety, medical, defense, finance, and welfare. Through this, it is utilized in various fields throughout the industry to provide human convenience and new values. However, on the contrary, it is time to respond as intelligent and sophisticated cyber threats are increasing and accompanied by potential adverse functions such as securing the technical safety of new technologies. In this paper, we propose a new data modeling method to enable IoT integrated security control by utilizing artificial intelligence technology as a way to solve these adverse functions.

Application of deep learning technique for battery lead tab welding error detection (배터리 리드탭 압흔 오류 검출의 딥러닝 기법 적용)

  • Kim, YunHo;Kim, ByeongMan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.71-82
    • /
    • 2022
  • In order to replace the sampling tensile test of products produced in the tab welding process, which is one of the automotive battery manufacturing processes, vision inspectors are currently being developed and used. However, the vision inspection has the problem of inspection position error and the cost of improving it. In order to solve these problems, there are recent cases of applying deep learning technology. As one such case, this paper tries to examine the usefulness of applying Faster R-CNN, one of the deep learning technologies, to existing product inspection. The images acquired through the existing vision inspection machine are used as training data and trained using the Faster R-CNN ResNet101 V1 1024x1024 model. The results of the conventional vision test and Faster R-CNN test are compared and analyzed based on the test standards of 0% non-detection and 10% over-detection. The non-detection rate is 34.5% in the conventional vision test and 0% in the Faster R-CNN test. The over-detection rate is 100% in the conventional vision test and 6.9% in Faster R-CNN. From these results, it is confirmed that deep learning technology is very useful for detecting welding error of lead tabs in automobile batteries.

SAAnnot-C3Pap: Ground Truth Collection Technique of Playing Posture Using Semi Automatic Annotation Method (SAAnnot-C3Pap: 반자동 주석화 방법을 적용한 연주 자세의 그라운드 트루스 수집 기법)

  • Park, So-Hyun;Kim, Seo-Yeon;Park, Young-Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.10
    • /
    • pp.409-418
    • /
    • 2022
  • In this paper, we propose SAAnnot-C3Pap, a semi-automatic annotation method for obtaining ground truth of a player's posture. In order to obtain ground truth about the two-dimensional joint position in the existing music domain, openpose, a two-dimensional posture estimation method, was used or manually labeled. However, automatic annotation methods such as the existing openpose have the disadvantages of showing inaccurate results even though they are fast. Therefore, this paper proposes SAAnnot-C3Pap, a semi-automated annotation method that is a compromise between the two. The proposed approach consists of three main steps: extracting postures using openpose, correcting the parts with errors among the extracted parts using supervisely, and then analyzing the results of openpose and supervisely. Perform the synchronization process. Through the proposed method, it was possible to correct the incorrect 2D joint position detection result that occurred in the openpose, solve the problem of detecting two or more people, and obtain the ground truth in the playing posture. In the experiment, we compare and analyze the results of the semi-automated annotation method openpose and the SAAnnot-C3Pap proposed in this paper. As a result of comparison, the proposed method showed improvement of posture information incorrectly collected through openpose.

A study on machine learning-based defense system proposal through web shell collection and analysis (웹쉘 수집 및 분석을 통한 머신러닝기반 방어시스템 제안 연구)

  • Kim, Ki-hwan;Shin, Yong-tae
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.87-94
    • /
    • 2022
  • Recently, with the development of information and communication infrastructure, the number of Internet access devices is rapidly increasing. Smartphones, laptops, computers, and even IoT devices are receiving information and communication services through Internet access. Since most of the device operating environment consists of web (WEB), it is vulnerable to web cyber attacks using web shells. When the web shell is uploaded to the web server, it is confirmed that the attack frequency is high because the control of the web server can be easily performed. As the damage caused by the web shell occurs a lot, each company is responding to attacks with various security devices such as intrusion prevention systems, firewalls, and web firewalls. In this case, it is difficult to detect, and in order to prevent and cope with web shell attacks due to these characteristics, it is difficult to respond only with the existing system and security software. Therefore, it is an automated defense system through the collection and analysis of web shells based on artificial intelligence machine learning that can cope with new cyber attacks such as detecting unknown web shells in advance by using artificial intelligence machine learning and deep learning techniques in existing security software. We would like to propose about. The machine learning-based web shell defense system model proposed in this paper quickly collects, analyzes, and detects malicious web shells, one of the cyberattacks on the web environment. I think it will be very helpful in designing and building a security system.

A study on the effect of introducing EBS AR production system on content (EBS AR 실감영상 제작 시스템 도입이 콘텐츠에 끼친 영향에 대한 연구)

  • Kim, Ho-sik;Kwon, Soon-chul;Lee, Seung-hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.711-719
    • /
    • 2021
  • EBS has been producing numerous educational contents with traditional virtual studio production systems since the early 2000s and applied AR video production system in October 2020, twenty-years after. Although the basic concept of synthesizing graphic elements and actual image in real time by tracking camera movement and lens information is similar to the previous one but the newly applied AR video production system contains some of advanced technologies that are improved over the previous ones. Marker tracking technology that enables camera movement free and position tracking has been applied that can track the location stably, and the operating software has been applied with Unreal Engine, one of the representative graphic engines used in computer game production, therefore the system's rendering burden has been reduced, enabling high-quality and real-time graphic effects. This system is installed on a crane camera that is mainly used in a crane shot at the live broadcasting studio and applied for live broadcasting programs for children and some of the videos such as program introductions and quiz events that used to be expressed in 2D graphics were converted to 3D AR videos which has been enhanced. This paper covers the effect of introduction and application of the AR video production system on EBS content production and the future development direction and possibility.

The Estimation of the Population by Using the Estimated Appropriate Rate Based on Customized Classification of Agriculture, Livestock and Food Industry (농축산식품산업 특수분류 기반 추정적격률을 이용한 모집단 추정 )

  • Wee Seong Seung;Lee MinCheol;Kim Jin Min;Shin Yong Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.117-124
    • /
    • 2023
  • Through reorganization in 2008, The ministry of Agriculture, Food and Rural Affairs integrated management of the food industry by transferred functions which was scattered in the Ministry of Health and Welfare, and established comprehensive policies covering the primary, secondary, and tertiary industries. In the agricultural industry sector, new business concepts such as smart farm and food tech have recently emerged alongside the fourth industrial revolution. In order for the Ministry of Agriculture, Food, and Rural Affairs to develop appropriate policies for the fourth industrial revolution, it is necessary to accurately estimate the size of agricultural and livestock-related businesses. In 2017, the Ministry of Agriculture, Food, and Rural Affairs initiated research for the agriculture, livestock and food industry's special classification, which was approved by the National Statistical Office in 2020. The estimation of the agriculture, livestock and food industry's size based on special classification is crucial because it has a substantial impact on the formulation and significance of policies. In this paper, the appropriate rate was derived from samples extracted from the special classification and the Korean standard industrial classification. Proposed are a method for estimating the population of the agricultural and livestock food industry, as well as a method for calculating the appropriate rate that more accurately reflects the population than the method currently in use.

The Application Methods of FarmMap Reading in Agricultural Land Using Deep Learning (딥러닝을 이용한 농경지 팜맵 판독 적용 방안)

  • Wee Seong Seung;Jung Nam Su;Lee Won Suk;Shin Yong Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.77-82
    • /
    • 2023
  • The Ministry of Agriculture, Food and Rural Affairs established the FarmMap, an digital map of agricultural land. In this study, using deep learning, we suggest the application of farm map reading to farmland such as paddy fields, fields, ginseng, fruit trees, facilities, and uncultivated land. The farm map is used as spatial information for planting status and drone operation by digitizing agricultural land in the real world using aerial and satellite images. A reading manual has been prepared and updated every year by demarcating the boundaries of agricultural land and reading the attributes. Human reading of agricultural land differs depending on reading ability and experience, and reading errors are difficult to verify in reality because of budget limitations. The farmmap has location information and class information of the corresponding object in the image of 5 types of farmland properties, so the suitable AI technique was tested with ResNet50, an instance segmentation model. The results of attribute reading of agricultural land using deep learning and attribute reading by humans were compared. If technology is developed by focusing on attribute reading that shows different results in the future, it is expected that it will play a big role in reducing attribute errors and improving the accuracy of digital map of agricultural land.

Quantitative Estimation Method for ML Model Performance Change, Due to Concept Drift (Concept Drift에 의한 ML 모델 성능 변화의 정량적 추정 방법)

  • Soon-Hong An;Hoon-Suk Lee;Seung-Hoon Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.259-266
    • /
    • 2023
  • It is very difficult to measure the performance of the machine learning model in the business service stage. Therefore, managing the performance of the model through the operational department is not done effectively. Academically, various studies have been conducted on the concept drift detection method to determine whether the model status is appropriate. The operational department wants to know quantitatively the performance of the operating model, but concept drift can only detect the state of the model in relation to the data, it cannot estimate the quantitative performance of the model. In this study, we propose a performance prediction model (PPM) that quantitatively estimates precision through the statistics of concept drift. The proposed model induces artificial drift in the sampling data extracted from the training data, measures the precision of the sampling data, creates a dataset of drift and precision, and learns it. Then, the difference between the actual precision and the predicted precision is compared through the test data to correct the error of the performance prediction model. The proposed PPM was applied to two models, a loan underwriting model and a credit card fraud detection model that can be used in real business. It was confirmed that the precision was effectively predicted.

A Study on the AI Home Care Solution for the Mobile Vulnerable (이동약자를 위한 AI 홈케어 솔루션에 관한 연구)

  • ChangBae Noh;Wonshik Na
    • Journal of Industrial Convergence
    • /
    • v.21 no.4
    • /
    • pp.165-170
    • /
    • 2023
  • There are cases where the mobility impaired have difficulty moving from the moment they leave the house. If guardians also do not have time to entrust their families, who are socially disadvantaged, to a shelter, the guardian has no choice but to check directly in order to know the location of the guardian. The AI home care solution was designed to relieve the anxiety and labor of caregivers and to provide convenience for protection facility officials and users. If more facilities distribute and use services free of charge to non-profit foundations and protective facilities, the concern of guardians will be reduced, and the burden of facility officials who have to manage facility users will be reduced. In this paper, we provide emergency notification services to guardians in the event of an emergency as well as location and status alarms for guardians, which are all data related to movement, in consideration of the mobility vulnerable. Furthermore, it is necessary to provide a service function that recommends the optimal route using a navigation function to ease the convenience and burden of facility officials. It is necessary to alleviate anxiety by providing necessary information to the guardian, such as the location of the shuttle used by the mobile weak and the time of getting on and off. In addition, while providing services for free, the goal is to improve the quality of service for facility managers and the quality of service for the mobility weak.