• Title/Summary/Keyword: 컴포넌트 오프로딩

Search Result 3, Processing Time 0.032 seconds

A Prediction-based Dynamic Component Offloading Framework for Mobile Cloud Computing (모바일 클라우드 컴퓨팅을 위한 예측 기반 동적 컴포넌트 오프로딩 프레임워크)

  • Piao, Zhen Zhe;Kim, Soo Dong
    • Journal of KIISE
    • /
    • v.45 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • Nowadays, mobile computing has become a common computing paradigm that provides convenience to people's daily life. More and more useful mobile applications' appearance makes it possible for a user to manage personal schedule, enjoy entertainment, and do many useful activities. However, there are some inherent defects in a mobile device that battery constraints and bandwidth limitations. These drawbacks get a user into troubles when to run computationally intensive applications. As a remedy scheme, component offloading makes room for handling mentioned issues via migrating computationally intensive component to the cloud server. In this paper, we will present the predictive offloading method for efficient mobile cloud computing. At last, we will present experiment result for validating applicability and practicability of our proposal.

Pratical Offloading Methods and Cost Models for Mobile Cloud Computing (모바일 클라우드 컴퓨팅을 위한 실용적인 오프로딩 기법 및 비용 모델)

  • Park, Min Gyun;Zhe, Piao Zhen;La, Hyun Jung;Kim, Soo Dong
    • Journal of Internet Computing and Services
    • /
    • v.14 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • As a way of augmenting constrained resources of mobile devices such as CPU and memory, many works on mobile cloud computing (MCC), where mobile devices utilize remote resources of cloud services or PCs, /have been proposed. A typical approach to resolving resource problems of mobile nodes in MCC is to offload functional components to other resource-rich nodes. However, most of the current woks do not consider a characteristic of dynamically changed MCC environment and propose offloading mechanisms in a conceptual level. In this paper, in order to ensure performance of highly complex mobile applications, we propose four different types of offloading mechanisms which can be applied to diverse situations of MCC. And, the proposed offloading mechanisms are practically designed so that they can be implemented with current technologies. Moreover, we define cost models to derive the most sutilable situation of applying each offloading mechanism and prove the performance enhancement through offloadings in a quantitative manner.

Methods for Stabilizing QoS in Mobile Cloud Computing (모바일 클라우드 컴퓨팅을 위한 QoS 안정화 기법)

  • La, Hyun Jung;Kim, Soo Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.507-516
    • /
    • 2013
  • Mobile devices have limited computing power and resources. Since mobile devices are equipped with rich network connectivity, an approach to subscribe cloud services can effectively remedy the problem, which is called Mobile Cloud Computing (MCC). Most works on MCC depend on a method to offload functional components at runtime. However, these works only consider the limited verion of offloading to a pre-defined, designated node. Moveover, there is the limitation of managing services subscribed by applications. To provide a comprehensive and practical solution for MCC, in this paper, we propose a self-stabilizing process and its management-related methods. The proposed process is based on an autonomic computing paradigm and works with diverse quality remedy actions such as migration or replicating services. And, we devise a pratical offloading mechanism which is still in an initial stage of the study. The proposed offloading mechanism is based on our proposed MCC meta-model. By adopting the self-stabilization process for MCC, many of the technical issues are effectively resolved, and mobile cloud environments can maintain consistent levels of quality in autonomous manner.