DOI QR코드

DOI QR Code

A Prediction-based Dynamic Component Offloading Framework for Mobile Cloud Computing

모바일 클라우드 컴퓨팅을 위한 예측 기반 동적 컴포넌트 오프로딩 프레임워크

  • 박진철 (숭실대학교 컴퓨터학과) ;
  • 김수동 (숭실대학교 소프트웨어학부)
  • Received : 2017.08.02
  • Accepted : 2017.12.12
  • Published : 2018.02.15

Abstract

Nowadays, mobile computing has become a common computing paradigm that provides convenience to people's daily life. More and more useful mobile applications' appearance makes it possible for a user to manage personal schedule, enjoy entertainment, and do many useful activities. However, there are some inherent defects in a mobile device that battery constraints and bandwidth limitations. These drawbacks get a user into troubles when to run computationally intensive applications. As a remedy scheme, component offloading makes room for handling mentioned issues via migrating computationally intensive component to the cloud server. In this paper, we will present the predictive offloading method for efficient mobile cloud computing. At last, we will present experiment result for validating applicability and practicability of our proposal.

모바일 디바이스의 보편적인 보급으로 인하여 모바일 컴퓨팅은 사용자들의 일상 생활에 편리를 가져다 주는 컴퓨팅 패러다임으로 되었다. 다양한 타입의 모바일 애플리케이션의 출현으로 인하여 사용자들은 언제 어디서나 자신의 스케줄 관리 등 다양한 업무 수행이 가능해졌지만 모바일 디바이스의 리소스 제한적인 문제로 인하여 일정 수준의 컴퓨팅 작업만 수행 가능하고 비교적 큰 컴퓨팅 작업을 수행하기에는 불편한 점이 존재한다. 클라우드 컴퓨팅 연구에서는 제한된 모바일 디바이스의 자원을 해결하기 위하여 기능 컴포넌트를 다른 서버 노드로 오프로딩(Offloading) 시킴으로써, 모바일 노드의 자원 문제를 해결하는 솔루션을 제공하였다. 그러나, 현재 진행되고 있는 동적 오프로딩 기법에 관한 연구는 개념적인 수준의 기법만 제시되고 있다. 본 논문에서는 모바일 노드의 성능을 보장하기 위한 예측 기반 동적 오프로딩 기법 및 프레임워크 설계 모델을 제안한다. 그리고 제안한 예측 기반 오프로딩 기법의 유효성 검증을 위한 실험 및 평가를 수행한다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. J. Shuja, A. Gani, and et al., "A Survey of Mobile Device Virtualization: Taxonomy and State of the Art," ACM Computing Surveys, Vol. 49, No. 1, pp. 1:1-1:36, Jul. 2016.
  2. L. Gkatzikis and I. Koutsopoulos, "Migrate or Not? Exploiting Dynamic Task Migration in Mobile Cloud Computing Systems," IEEE Wireless Communications, Vol. 20, No. 3, pp. 24-32, Jul. 2013. https://doi.org/10.1109/MWC.2013.6549280
  3. H. Flores, P. Hui, and et al., "Mobile Code Offloading: From Concept to Practice and Beyond," IEEE Communications Magazine, Vol. 53, No. 3, pp. 80-88, Mar. 2015. https://doi.org/10.1109/MCOM.2015.7060486
  4. H. J. La and S. D. Kim, "A Self-Stabilizing Process for Mobile Cloud Computing," Proc. of the 2013 IEEE Seventh International Symposium on Service-Oriented System Engineering (SOSE 2013), pp. 454-462, 2013.
  5. N. Fernando, S. W. Loke, and W. Rahayu, "Mobile Cloud Computing: A Survey," Future Generation Computer Systems, Vol. 29, No. 1, pp. 84-106, Jan. 2013. https://doi.org/10.1016/j.future.2012.05.023
  6. S. Abolfazli, Z. Sanaei, and et al., "Cloud-based Augmentation for Mobile Devices: Motivation, Taxonomies, and Open Challenges," IEEE Communications Survey and Tutorials, Vol. 16, No. 1, pp. 337-368, Jul. 2013. https://doi.org/10.1109/SURV.2013.070813.00285
  7. D. Huang, P. Wang, and D. Niyato, "A Dynamic Offloading Algorithm for Mobile Comoputing," IEEE Transactions on Wireless Communications, Vol. 11, No. 6, pp. 1991-1995, Apr. 2012. https://doi.org/10.1109/TWC.2012.041912.110912
  8. X. Ma, Y. Zhao, and et al., "When Mobile Terminals Meet the Cloud: Computation Offloading as the Bridge," IEEE Networks, Vol. 27, No. 5, pp. 28-33, Oct. 2013.
  9. H. Wu, D. Huang, and M. Chen, "POEM: On Establishing A Personal On-demand Execution Environment for Mobile Cloud Applications," Proc. of the 2015 IEEE International Conference on Mobile Services (MS 2015), pp. 41-48, 2015.
  10. E. Cuervo, A. Balasubramanian, and et al., "MAUI: Making Smartphones Last Longer with Code Offload," Proc. of the 8th International Conference on Mobile Systems, Applications, and Services (MobiSys 2010), pp. 49-62, 2010.
  11. B.-G. Chun and P. Maniatis, "Dynamically Partitioning Applications between Weak Devices and Clouds," Proc. of 1st ACM Workshop on Mobile Cloud Computing & Services: Social Networks and Beyond (MCS 2010), Articla No. 7, 2010.
  12. B. G. Chun, S. Ihm, and et al., "CloneCloud: Elastic Execution between Mobile Device and Cloud," Proc. of 6th European Conference on Computer Systems (EuroSys 2011), pp. 301-314, 2011.
  13. H. J. La and S. D. Kim, "A Taxonomy of Offloading in Mobile Cloud Computing," Proc. of the 2014 IEEE 7 International Conference on Service-Oriented Computing and Applications (SOCA 2014), pp. 147-153, 2014.
  14. W. Liu, J. J. Chen, and et al., "Computation Offloading by Using Timing Unreliable Components in Real-time Systems," Proc. of the 51st ACM/EDAC/IEEE Design Automation Conference (DAC 2014), pp. 1-6, 2014.
  15. S. Deng, L. Huang, and et al., "Computation Offloading for Service Workflow in Mobile Cloud Computing," IEEE Transactions on Parallel and Distributed Systems, Vol. 26, No. 12, pp. 3317-3329, Dec. 2014.
  16. W. L. Wang, T. L. Hemminger, and M. H. Tang, "A Moving Average Non-Homogeneous Poisson Process Reliability Growth Model to Account for Software with Repair and System Structures," IEEE Transactions on Reliability, Vol. 56, No. 3, pp. 411-421, Sept. 2007. https://doi.org/10.1109/TR.2007.903119
  17. H. Seng, "A New Approach of Moving Average Method in Time Series Analysis," Proc. of the 2013 Conference on New Media Studies (CoNMedia 2013), pp. 1-4, 2013.
  18. A. Raudys, "Optimal Negative Weight Moving Average for Stock Price Series Smoothing," Proc. of the 2014 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr 2014), pp. 239-246, 2014.
  19. L. Chen, P. Wu, and et al., "Energy Efficient Parallel Matrix-Matrix Multiplication for DVFS-Enabled Clusters," Proc. of the 21 International Conference on Parallel Processing Workshops (ICPPW 2012), pp. 239-245, 2012.