The purpose of this paper is to show the clustering trend and the comparison of empirical results and is to choose the clustering ports for 3 Korean ports(Busan, Incheon and Gwangyang Ports) by using the bootstrapped DEA(Data Envelopment Analysis) and game Cross-efficiency models for 38 Asian ports during the period 2003-2013 with 4 input variables(birth length, depth, total area, and number of cranes) and 1 output variable(container TEU). The main empirical results of this paper are as follows. First, bootstrapped DEA efficiency of SW and LT is 0.7660, 0.7341 respectively. Clustering results of the bootstrapped DEA analysis show that 3 Korean ports [ Busan (6.46%), Incheon (3.92%), and Gwangyang (2.78%)] can increase the efficiency in the SW model, but the LT model shows clustering values of -1.86%, -0.124%, and 2.11% for Busan, Gwangyang, and Incheon respectively. Second, the game cross-efficiency model suggests that Korean ports should be clustered with Hong Kong, Shanghi, Guangzhou, Ningbo, Port Klang, Singapore, Kaosiung, Keelong, and Bangkok ports. This clustering enhances the efficiency of Gwangyang by 0.131%, and decreases that of Busan by-1.08%, and that of Incheon by -0.009%. Third, the efficiency ranking comparison between the two models using the Wilcoxon Signed-rank Test was matched with the average level of SW (72.83 %) and LT (68.91%). The policy implication of this paper is that Korean port policy planners should introduce the bootstrapped DEA, and game cross-efficiency models when clustering is needed among Asian ports for enhancing the efficiency of inputs and outputs. Also, the results of SWOT(Strength, Weakness, Opportunity, and Threat) analysis among the clustering ports should be considered.
The purpose of this paper is to show the empirical measurement way for predicting the seaport efficiency by using Super SBM(Slack-based Measure) with Wilcoxson signed-rank test under CRS(constant returns to scale) condition for 20 Korean ports during 11 years(1997-2007) for 3 inputs(port investment amount, birthing capacity, and cargo handling capacity) and 5 outputs(Export and Import Quantity, Number of Ship Calls, Port Revenue, Customer Satisfaction Point for Port Service and Container Cargo Throughput). The main empirical results of this paper are as follows. First, Super SBM model has well reflected the real data according to the Wilcoxon signed rank test, because p values have exceeded the significance level. Second,Super-SBM has shown about 87% of predicting ratio for the ports efficiency and the optimal size of investment in domestic seaport. The policy implication to the Korean seaports and planner is that Korean seaports should introduce the new methods like Super-SBM method with Wilcoxon signed rank test for predicting the efficiency of port performance and the optimal size of investment as indicated by Panayides et al.(2009, pp.203-204).
This paper considers logistics decision support system which deals with transportation mode selection considering transportation and carbon emission cost. Transportation and carbon emission costs vary with the choice of transportation modes and to become competitive companies need to find proper transportation modes for their logistics services. However, due to the restricted capacity of transportation modes, it is difficult to balance transportation and carbon emission costs when designing logistics network including transportation mode choice for each service. Therefore this paper aims to analyze the trade-off relationship between transportation and carbon emission cost in mode selection of intermodal transportation and to provide optimal green logistics strategy. In this paper, the logistics decision support system is designed based on mixed integer programming model. To understand the trade-off relationship of transportation and carbon emission cost, the system is tested with various scenarios including transportation of containers between Seoul and Busan. The analysis results show that, even though sea transportation combined with trucking is competitive in carbon emission per unit distance travelled, the total cost of carbon emission and transportation for the sea transportation may not have competitive advantage over other transportation modes including rail and truck transportation modes. The sea-based intermodal logistics service may induce detours which have negative impacts on the overall carbon emission. The proposed logistics decision support system is expected to play key role in green logistics and supply chain management.
Competitiveness of container ports has been traditionally evaluated by capability of individual ports to provide services to customers or their service quality. However, since container ports are connected by container shipping networks to varying degrees, the status of the ports in liner shipping service networks also determines competitiveness of the ports. Sometimes same ports may play different roles in different forms of shipping networks. Shipping network connections that formulate in container ports therefore have more significant impact on their performance than service capabilities they have. This study aims to explore how the shipping and port network has been structured and changed in the past and to examine the network characteristics of ports using Social Network Analysis(SNA). In this SNA study, nodes in the network are the ports-of-call of the liner shipping services and links in the network are connections realized by vessel movements, such that the liner shipping networks determine the port networks. This study, therefore, investigates the liner shipping networks and through its results demonstrates the network characteristics of the ports that are represented by the four centrality indices. This provides port authorities and terminal operating companies with managerial implications to enhance competitiveness from customers' perspectives.
The aim of this study is to analyze the efficiency of major ports in Northeast Asia such as Korea, China and Japan. For the empirical analysis, we tried to apply the data envelopment analysis (DEA), which is an efficiency evaluation model based on mathematical programming theory, and we also established a model to Northeast Asian ports. In our opinion, DEA analysis which involves multiple inputs as well as multiple outputs in its efficiency valuation makes analysis more suitable for port efficiency measurement because ports produce a number of different outputs. In this paper, we attempted to analyze the relative efficiency of 27 ports (5 Korean ports, 13 Chinese ports, 9 Japanese ports) through DEA-CCR, DEA-BCC models. According to the result, Chinese ports are relatively efficient than Korean and Japanese ports. The result of the analysis shows that 7 Chinese ports are efficient in DEA-CCR model in 2009, but in DEA-BCC model 8 Chinese ports and 1 Koran port are efficient. Most of inefficient ports have a value closed to 1 in efficiency for scale, it means that the reason of inefficiency is caused from the technical aspect. Furthermore, we also verified that there exists excess of input in Korean and Japanese ports than Chinese ports.
This study is to investigate seaport clustering by using meta-frontier and cross-efficiency models. Data covers the 13 Asian ports during 2009, 2010 and 2013 with 3 inputs(depth, total area, and number of cranes) and 1 output(TEU). Correlations coefficient from cross-efficiency matrix are used for measuring clustering dendrogram. After that, meta-frontier analysis for investigating whether the clustering using cross-efficiency method increases the meta-efficiency. Empirical main results are as follows: First, group efficiencies of Busan, Incheon, and Gwangyang ports are increased. Second, meta and group efficiencies of China ports are greater than those of Korean ports. Third, distortion of technology gap of Gwangyang is lower than that of Busan and Incheon. Fourth, Gwangyang, clustering with Ningbo, Chingtao, Tokyo and Caosung ports in 2009 and with Dubai port in 2013 can increase the efficiency. Fifth, to enhance the efficiency, Busan port should be clustered to group 2 in 2010 and group 1 in 2013, and Incheon port clustered to group 2 in 2010 and 2013. Fifth, it is empirically investigated that Busan, Incheon and Gwangyang ports can increase the efficiency by using Cross-efficiency and Meta-frontier models. Port policy planner should promote the clustering policy for Busan with Hong Kong, Shanghai, and Singapore, Incheon and Gwangyang with Chingtao, Nagoya, Ningbo, Tokyo, and Kaoshung ports.
Coastal ports play an essential role in developing a country and a city. Port efficiency is an important factor affecting port trade, and the importance of port efficiency for port performance has been recognized in previous literature. DEA (Data Envelopment Analysis) and SFA (Stochastic Frontier Analysis) are widely used in this field of research. However, these two methods are limited in selecting input and output variables. In addition, the literature studies on Chinese coastal ports mainly focus on the study of port clusters in local areas, which lacks a holistic approach and generally lacks up-to-date data. Therefore, to fill the gap in this area of research, this paper introduces a model combining principal component analysis and data envelopment analysis to analyze the operational efficiency of the top 17 coastal ports in China in terms of throughput based on the most recent data available in 2021. This paper identifies container throughput as the output variable, and 13 second indicators are selected as input variables from four primary indicators: land, capital, labor, and infrastructure. Four principal components were selected from 13 second indicators using PCA.After that, DEA (BBC) and DEA (CCR) were used to analyze the 17 ports, among which five were Shanghai, Ningbo-Zhoushan, Guangzhou, Xiamen, and Dongguan, respectively, DEA efficient, and the remaining 12 ports were non-DEA efficient. Finally, improvement directions for each port are derived, and brief suggestions are made. This paper provides some reference value for developing and constructing coastal ports in China.
The purpose of this paper is to empirically examine whether there are significant relations among rankings of cross-efficiency, web accessibility, and website evaluation. For this purpose, the study uses the KWAH-4 method developed by the Web Accessibility Laboratory in Korea, website evaluation method developed by the Business Development Bank of Canada (BDC), and the cross-efficiency model for 13 Asian container seaports including Korean, Chinese, and Japanese main ports in 3 years (2009, 2010, and 2013) using data for two cases: three inputs (depth, total area, and number of crane) and one output (TEU) in the first case and three inputs and two outputs (TEU and BDC overall score) in the second case. The main empirical results are as follows. First, the ranking orders of cross-efficiency, web accessibility, and website evaluation overall scores are not significantly correlated with each other. Second, if the BDC overall score is included in the output element, the correlation results are improved. However, the correlation coefficient is still low. The container port policy planners should introduce and consider the web accessibility and website evaluation scores when evaluating an efficiency-increasing plan for Korea's main container ports.
The purpose of this paper is to show the clustering trend by using the context-dependent and measure-specific models for 38 Asian ports during 10 years(2001-2009) with 4 inputs and 1 output. The main empirical results of this paper are as follows. First, clustering results by using context-dependent and measure-specific models are same. Second, the most efficient clustering was shown among the Hong Kong, Singapore, Ningbo, Guangzhou, and Kaosiung ports. Third, Port Sultan Qaboos, Jeddah, and Aden ports showed the lowest level clustering. Fourth, ranking order of attractiveness is Guangzhou, Dubai, HongKong, Ningbo, and Shanghai, and the results of progressive scores confirmed that low level ports can increase their efficiency by benchmarking the upper level ports. Fifth, benchmark share showed that Dubai(birth length), and HongKong(port depth, total area, and no. of cranes) have affected the efficiency of the inefficient ports.
The purpose of this study is to investigate the empirical results of Analytic Hierarchy Process/Data Envelopment Analysis-Assurance Region(AHP/DEA-AR) by using multiple regression analysis during the period of 2009-2012 with 5 inputs (number of gantry cranes, number of berth, berth length, terminal yard, and mean depth) and 2 outputs (container TEU, and number of direct calling shipping companies). Assurance Region(AR) is the most important tool to measure the efficiency of seaports, because individual seaports are characterized in terms of inputs and outputs. Traditional AHP and multiple regression analysis techniques have been used for measuring the AR. However, few previous studies exist in the field of seaport efficiency measurement. The main empirical results of this study are as follows. First, the efficiency ranking comparison between the two models (AHP/DEA-AR and multiple regression) using the Wilcoxon signed-rank test and Mann-Whitney signed-rank sum test were matched with the average level of 84.5 % and 96.3% respectively. When data for four years are used, the ratios of the significant probability are decreased to 61.4% and 92.5%. The policy implication of this study is that the policy planners of Korean port should introduce AHP/DEA-AR and multiple regression analysis when they measure the seaport efficiency and consider the port investment for enhancing the efficiency of inputs and outputs. The next study will deal with the subjects introducing the Fuzzy method, non-radial DEA, and the mixed analysis between AHP/DEA-AR and multiple regression analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.