• Title/Summary/Keyword: 커터간격

Search Result 21, Processing Time 0.02 seconds

Estimation of the optimum TBM disc cutter spacing by the dynamic fracture modeling (동적 파괴모델링에 의한 TBM 디스크 커터의 최적 절삭간격 예측)

  • You, Sang-Hwa;Chang, Soo-Ho;Cho, Jung-Woo;Jeon, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.81-90
    • /
    • 2008
  • It is of great importance to determine the optimum cutter spacing in TBM. In order to determine the optimum cutter spacing, a series of cutting tests by linear cutting machine (LCM) are performed with changing cutter space. This study showed that a numerical method for estimating the optimum cutter spacing could be developed by AUTODYN-3D in order to overcome the limitation of LCM test. By using this method, the optimum cutter spacing of Hwangdeung granite was estimated.

  • PDF

A study on the optimum cutter spacing ratio according to penetration depth using decision tree-based and SVM regressions (의사결정나무 기반 회귀분석과 SVM 회귀분석을 이용한 커터 관입깊이에 따른 최적 커터간격 비 연구)

  • Lee, Gi-Jun;Ryu, Hee-Hwan;Kwon, Tae-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.501-513
    • /
    • 2020
  • Cutter cutting tests for the cutter placement in the cutter head are being conducted through various studies. Although the cutter spacing at the minimum specific energy is mainly reflected in the cutter head design, since the optimum cutter spacing at the same cutter penetration depth varies depending on the rock conditions, studies on deciding the optimum cutter spacing should be actively conducted. The machine learning techniques such as the decision tree-based regression model and the SVM regression model were applied to predict the optimum cutter spacing ratio for the nonlinear relationship between cutter penetration depth and cutter spacing. Since the decision tree-based methods are greatly influenced by the number of data, SVM regression predicted optimum cutter spacing ratio according to the penetration depth more accurately and it is judged that the SVM regression will be effectively used to decide the cutter spacing when designing the cutter head if a large amount of data of the optimum cutter spacing ratio according to the penetration depth is accumulated.

A Study on the Arrangement Design of Shield-TBM Cutter Bit (Shield-TBM 커터비트배치 설계에 관한 연구)

  • Kim, Sang-Hwan;Kim, Ji-Tae;Lim, Chae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.67-76
    • /
    • 2012
  • This study is a research about cutter bits arrangement of shield-TBM and carried out a scale model test and numerical analysis according to a space of cutter bits. A cutter head pressures and an advance time are measured to be followed by the space of cutter bits with an advance speed through the scale model test. We conducted the numerical analysis to verify the result of the scale model test, and to compare with the scale model test. There are three cases of space : unification 1.0D and 1.5D. In case TBM is excavated and space is 1.0D, the advance speed is much faster than the other cases, and pressure of face of ground deformation and cutter head is maintained stably. If additional researches about bits arrangement of cutter head of sand ground based on the result of this research are performed, substantial results may be obtained.

A numerical study on the optimum spacing of disc cutters considering rock strength and penetration depth using discrete element method (암반강도 및 압입깊이에 따른 디스크커터의 최적간격 산정을 위한 개별요소법 기반 수치해석 연구)

  • Lee, Sang Yun;Song, Ki-il;Jung, Ju Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.383-399
    • /
    • 2020
  • Optimizing the spacing of the disc cutter is a key element in the design of the TBM cutter head, which determines the drilling performance of the TBM. The full-scale linear cutting test is known as the most reliable and accurate test for calculating the spacing of the disc cutter, but it has the disadvantage of costly and time-consuming for the full-scale experiment. In this study, through the numerical analysis study based on the discrete element method, the tendency between Specific Energy-S/P ratio according to uniaxial compression strength and penetration depth of rock was analyzed, and the optimum spacing of 17-inch disc cutter was derived. To examine the appropriateness of the numerical analysis model, the rolling force acting on the disc cutter was compared and reviewed with the CSM model. As a result of numerical analysis for the linear cutting test, the rolling force acting on the disc cutter was analyzed to be similar to the rolling force derived from the theoretical formula of the CSM model. From the numerical analysis on 5 UCS cases (50 MPa, 70 MPa, 100 MPa, 150 MPa, 200 MPa), it is found that the range of the optimum spacing of the disc cutter decreases as the rock strength increases. And it can be concluded that 80~100 mm of disc cutter spacing is the optimum range having minimum specific energy regardless of rock strength. This tends to coincide with the optimal spacing of previously reported disk cutters, which underpins the disk cutter spacing calculated through this study.

Numerical study on rock fragmentation by TBM disc cutter (TBM 디스크 커터의 암석절삭에 관한 수치해석적 연구)

  • Cho, Jung-Woo;Yu, Sang-Hwa;Jeon, Seok-Won;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.139-152
    • /
    • 2008
  • A series of numerical experiments were carried out to simulate the rock cutting behavior by TBM disc cutter in a given took condition. AUTODYN-3D, a commercial program capable of simulating three-dimensional dynamic failure, was utilized to carry out the numerical tests over four different disc cutter spacing conditions. After modelling three-dimensional geometries of disc cutter and rock specimen, the linear cutting tests by a disc cutter were simulated for eight different types of rocks. The numerical result, that is the optimum cutter spacing for isotropic rocks had the good agreements with those from linear cutting test. However, for relatively anisotropic or jointed rocks, the specific energy obtained from the numerical tests was almost two-times bigger than the real linear cutting results. Therefore, to simulate cutting procedures for anisotropic rocks realistically, further studies would be necessary.

  • PDF

Performance estimation of conical picks with slim design by the linear cutting test (I): depending on attack angle variation (선형절삭시험에 의한 슬림 코니컬커터의 절삭성능 평가(I): Attack Angle 변화에 의한 결과)

  • Choi, Soon-Wook;Chang, Soo-Ho;Park, Young-Taek;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.573-584
    • /
    • 2014
  • In this study, the variations of cutter acting forces depending on cutting conditions were examined to obtain basic data for roadheader cutting head design. The linear cutting tests were performed in the condition of different attack angles, penetration depths, cutter spacings by using a slim conical pick for the light cutting condition. Cutter acting forces were measured by 3-directional load cell under different test conditions, and the analysis for cutting performance were carried out after calculating average values of the measured results. It is confirmed that the optimal cutting condition for the mortar specimen is the 50 degree attack angle, the cutter spacing of 12 mm, the cutting depth of 9 mm which are obtained from the analysis results. In addition, 50 degree attack angle is more effective than 45 degree attack angle to design optimal specifications of cutting head.

A Numerical Study on the Rock Fragmentation by TBM Cutter Penetration (TBM 커터 관입에 의한 암석 파쇄의 수치해석적 연구)

  • 백승한;문현구
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.444-454
    • /
    • 2003
  • Rock fragmentation technique by cutter penetration has widely been used in the mechanical tunnel excavation. Microcracks propagate and interact because of locally concentrated high stress induced by cutter penetration. which is caused by heterogeneity of rocks. In this study Weibull distribution function and degradation index are used to consider the strength heterogeneity of a rock and the degradation of rock properties after failure. Through the numerical analyses, it is shown that the lateral pressure has an important influence on the rock fragmentation. In the single cutter penetration, large chips are formed as lateral pressure increase. The cutter spacing is also an important factor that affects the rock fragmentation in the double cutter penetration. The fragmentation efficiency of the double cutter penetration is better when cutter spacing is 70 mm than 40 mm and 100 mm. From the results, it is expected that this study can be applied to a TBM tunnel design by understanding of chipping process and mechanism of rock due to cutter penetration.

Three Dimensional Numerical Analysis on Rock Cutting Behavior of Disc Cutter Using Particle Flow Code (3차원 입자결합모델을 이용한 디스크 커터의 암석절삭에 관한 연구)

  • Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.54-65
    • /
    • 2013
  • The LCM (Linear Cutting Machine) test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. In order to overcome this problem, lots of numerical studies have been performed. In this study, the PFC3D (Particle Flow Code in 3 Dimension) has been adopted for numerical analysis on optimum cutter spacing and failure aspects of Busan Tuff. The optimum cutting condition with s/p ratio of 16 and minimum specific energy of $14MJ/m^3$ was derived from numerical analyses. The cutter spacing for Busan Tuff had the good agreements with those of LCM test and numerical analysis by finite element method.

A experimental study on the loads and temperature acting on the shaft of a disc cutter during linear rock cutting test (선형절삭실험 중 디스크커터 축에 작용하는 하중과 온도에 대한 실험적 연구)

  • Choi, Soon-Wook;Chang, Soo-Ho;Park, Young-Taek;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.237-251
    • /
    • 2013
  • This study aimed to estimate the axial stress and torque on a shaft in a disc cutter. The corresponding inner temperature and the surface temperature of a cutter ring were also measured by using strain gauges and thermocouples during the linear cutting tests. The maximum values of the axial stress and torque were recorded to 11.3 MPa, $171kN{\cdot}m$ respectively. They have higher correlations with normal force rather than rolling force. The results of temperature measured by thermocouples during a linear cutting test showed that the rate of increase in temperature was below $0.2^{\circ}C$. When the cutter spacing is set to be 70 mm, the inner temperature and surface temperature of a disc cutter were $0.1^{\circ}C/m$, $0.15{\sim}0.17^{\circ}C/m$ respectively. Similarly, when the cutter spacing is 90 mm, the temperature values were $0.09^{\circ}C/m$, $0.13{\sim}0.23^{\circ}C/m$ respectively.

Assessment of Cutting Performance of a TBM Disc Cutter for Anisotropic Rock by Linear Cutting Test (선형절삭시험에 의한 이방성 암석에 대한 TBM 디스크커터 절삭 성능 평가 연구)

  • Jeong, Ho-Young;Jeon, Seok-Won;Cho, Jung-Woo;Chang, Soo-Ho;Bae, Gyu-Jin
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.508-517
    • /
    • 2011
  • The linear cutting test is the most reliable and accurate approach to measuring cutting forces and cutting efficiency using full-size disc cutter in various rock types. The result of linear cutting tests can be used to obtain the key parameters of cutter-head design (i.e. optimum cutter spacing, cutter forces). In Korea, LCM (Linear Cutting Machine) tests have been performed for typical Korean rock types, but these studies focused on the isotropic rocktypes. For prediction of TBM (Tunnel Boring Machine) performances in complex geological conditions including a bedded and schistose rockmass, it is important to consider the effects of anisotropy of rockmass on cutting performances and cutting efficiency. This study discusses a series of LCM tests that were performed for Asan Gneiss having two types of anisotropy angles to assess the effect of the anisotropy angle on rock-cutting performances of TBM. The result shows that the rock-cutting performances and optimum cutting conditions are affected by anisotropy angle and the effect of anisotropy on rock strength should be considered in a prediction of the cutting performances and efficiency of TBM.