커널(Kernel)을 이용한 분류 방법은 넓은 마진(large margin) 분류기로서 SVM(Support Vector Machine)을 주로 사용하게 된다 하지만, 이 방법은 라그랑제 파라미터(Lagrange Parameter)의 최적화 과정을 포함함으로써 학습 과정을 쉽지 않게 만든다. 이 최적화 과정은 특히 DNA computing과 같은 단순한 과정의 설계를 통해 결과를 얻어야 하는 새로운 계산 모델에 커널을 적용하고자 했을 경우 큰 장벽이 된다. 본 논문에서는 넓은 마진을 목표로 하는 최적화 과정이 아닌 다른 라벨(label)의 데이터간의 경계 파악을 위한 간단한 커널 갱신 방법의 도입을 통해 분류기를 설계한다. 이 방법을 가우시안 커널에 적용시켜 본 결과, 반복을 통해 데이터의 구조를 찾아갈 수 있는 특성을 보여주며, 결국 넓은 마진의 최적화된 파라미터를 찾게 됨을 보여준다. 본 논문에서는 이 최적화 방법을 DNA 분자를 이용한 커널 생성 모델인 DNA 커널에 적용시켰을 때 잘 알려진 AML/ALL 데이터를 잘 분류해 냄을 보여준다.
통계학습이론에 기반하고 있는 Support Vector Machine(SVM)은 구조적 위험 최소화원리를 바탕으로 하는 학습 알고리즘이다. 일반적으로SVM은 비선형 경계를 결정하고 자료를 분류하기 위해서 커널(kernel)을 사용한다. 그러나 기존의 커널들은 두 벡터간의 내적이나 거리차를 이용하여 유사도를 측정하기 때문에 하이퍼스펙트럴 영상분류에 효과적으로 적용될 수 없다. 본 논문에서는 이를 해결하기 위해서 분광유사도커널(Spectral similarity kernel)을 제안한다. 분광유사도 커널은 두 벡터의 거리차와 각 차이를 모두 계산하는 지역적 커널로 하이퍼스펙트럴 영상의 분광특성을 효과적으로 고려할 수 있다. 이를 검증하기 위해서 Hyperion 영상에 polynomial kernel, RBF kernel을 사용한 SVM 분류기와 분광유사도 커널을 사용한 SVM 분류기를 적용하여 토지피복분류를 시행하였다. 분류결과를 통해서 분광유사도 커널을 사용한 SVM 분류기가 정량적, 공간적으로 가장 우수한 결과를 보임을 확인하였다.
본 논문에서는 커널분류기에 요구되는 다량의 계산량과 자료저장공간을 감소시키도록 고안된 최적군집방법을 적용한 K-평균 가중커널분류기법이 제안되었다. 이 방법은 원래의 훈련표본보다 작은 수의 참고벡터들과 그들의 가중값을 들을 찾아 원래 커널분류 기준을 근사화하여 패턴을 인식하는 것이다. K-평균 가중커널분류기법은 가중파젠윈도우(WPW)분류기법을 개량한 것으로서 참고벡터들을 계산하기 위한 초기 부적절하게 군집된 관측값들을 최적으로 재군집화 함으로써 WPW기법의 단범을 극복하였다. 실제자료들에 제안된 방법을 적용한 결과 WPW분류기법보다 참고벡터들의 대표성과 자료축소면에서 월등히 향상된 결과를 확인하였다
본 논문은 효율적인 음악 데이터의 분류를 위한 방법으로 분산커널 기반의 퍼지 c-평균을 이용한 분류기 모델을 제안한다. 분산 커널 기반의 퍼지 c-평균은 주어진 오디오 데이터에서 추출된 특징벡터의 평균과 공분산 정보를 동시에 이용하여 기존의 평균값만을 사용하는 방식에 비해 성능을 월등히 향상시킬 수 있는 장점이 있다. 사용된 방식은 확률적 분포로 주어지는 데이터 사이의 거리를 분산거리척도로 측정하고, 복잡한 분류 경계를 단순화 시키는데 효율적인 커널 개념을 사용함으로서 분류의 정확도를 극대화 시킬 수 있는 장점이 있다. 제안하는 분류기의 성능을 평가하기 위하여 고전음악, 컨트리음악, 힙합, 재즈의 4개의 장르 음악데이터를 총 1200개 수집하여 실험을 진행하였다. 실험의 결과 제안된 분산커널 기반의 퍼지 c-평균을 이용하는 분류기는 기존의 방식과 비교하여 분류정확도에서 평균적으로 17.73%-21.84%의 성능향상을 보여준다.
본 논문에서는 커널 주성분 분석 (KPCA, kernel principal component analysis)으로 강화한 화자 특징을 이용하여 복수의 분류기를 학습하고 이를 앙상블 결합하는 화자 식별 방법을 제안한다. 이 때, 계산량과 메모리 요구량을 줄이기 위해 전체 화자 특징 벡터 중 일부를 랜덤 선택하여 커널 주성분 분석의 기저를 추정한다. 실험 결과, 제안한 방법이 그리디 커널 주성분 분석 (GKPCA, greedy kernel principal component analysis)보다 높은 화자 식별률을 보였다.
본 논문에서는 감성 점수가 명시적으로 부여되지 않은 온라인 영화평에 대해 자동으로 감성을 분류하는 방법을 제안한다. 긍정이나 부정과 같은 감성 극성 분류를 위해 문자열 커널의 확장 모델인 음절 커널에 기반한 지지벡터기계를 분류기로 사용한다. 실험을 통하여 띄어쓰기나 철자 오류 같은 문법적인 오류가 빈번한 온라인 영화평에 대한 감성 분류에서 제안한 음절 커널 방법이 효과적임을 보인다.
전 세계적으로 고령화 사회가 지속됨에 따라 평균수명이 증가하여 고령화 문제가 심각해지고 있는 추세이다. 고령에 속하는 65세 이상 노인들이 자주 발병하는 알츠하이머 치매는 명확한 치료법이 존재하지 않아 발병 전 조기 발견 및 예방이 중요하다. 본 논문에서는 컨볼루션 신경망을 기반으로 한 알츠하이머 치매분류방법을 제안한 논문과, 그래프 합성곱 신경망, 다중 커널 학습 분류기, 기계학습, SVM 분류기 등의 방법으로 알츠하이머 치매 분류에 대한 논문을 소개하고, 각각의 제안 방법 및 특징에 대해 비교분석한다.
본 논문은 분류 문제의 훈련 패턴으로부터 형성되는 커널 공간의 저밀도 표현을 가능하게 하는 커널 방법에 대한 새로운 학습방법론을 제안한다. 선형 판별 함수에 대한 기존의 학습법 중에서 이완 절차가 SVM(Support Vector Machine) 분류기와 동등하게 선형분리 가능 패턴분류 문제의 최대 마진 분리 초평면을 얻을 수 있다. 기존의 이완 절차는 지원 백터에 대한 필요 조건을 만족한다. 본 논문에서는 학습 중 지원 벡터를 확인하기 위한 충분 조건을 제시한다. 순차적 학습을 위하여 기존의 SVM을 확장하고 커널 판별함수를 정의한 후에 체계적인 학습방법을 제시한다. 실험 결과는 새 방법이 기존의 방법과 동등하거나 우수한 분류 성능을 갖고있음을 보여준다.
많은 실세계의 문제에서 일반적인 패턴 분류 알고리즘들은 데이터의 불균형 문제에 어려움을 겪는다. 각각의 학습 예제에 균등한 중요도를 부여하는 기존의 기법들은 문제의 특징을 제대로 파악하지 못하는 경우가 많다. 본 논문에서는 불균형 데이터 문제를 해결하기 위해 퍼셉트론에 기반한 부스팅 기법을 제안한다. 부스팅 기법은 학습을 어렵게 하는 데이터에 집중하여 앙상블 머신을 구축하는 기법이다. 부스팅 기법에서는 약학습기를 필요로 하는데 기존 퍼셉트론의 경우 문제에 따라 약학습기(weak learner)의 조건을 만족시키지 못하는 경우가 있을 수 있다. 이에 커널을 도입한 커널 퍼셉트론을 사용하여 학습기의 표현 능력을 높였다. Reuters-21578 문서 집합을 대상으로 한 문서 여과 문제에서 부스팅 기법은 다층신경망이나 나이브 베이스 분류기보다 우수한 성능을 보였으며, 인공 데이터 실험을 통하여 부스팅의 샘플링 경향을 분석하였다.
데이터베이스 시스템의 응용분야가 데이터웨어하우징에서 전자상거래에 이르기까지 광범위해지면서 데이터베이스 시스템이 대형화되었다. 이로 인해 데이터베이스 시스템의 성능 향상을 위한 튜닝이 중요한 논점이 되었다. 데이터베이스 시스템의 튜닝은 워크로드 특성을 고려하여 수행할 필요가 있다. 그러나 복합적인 데이터베이스 환경에서 워크로드를 식별하기는 어려우므로 자동적인 식별 방법이 요구된다. 본 논문에서는 데이터베이스 워크로드를 자동적으로 식별하는 SVM 워크로드 분류기를 제안한다. TPC-C와 TPC-W 성능 평가에서 자원할당 파라미터 변경에 따른 워크로드 데이터를 수집하여 SVM을 통해 분류 한다. SVM의 커널별 커널 파라미터와 오류 허용 임계치 값인 C의 조정을 통하여 최적의 SVM 워크로드 분류기를 선택한다. 제안한 SVM 워크로드 분류기와 Decision Tree, Naive Bayes, Multilayer Perceptron, K-NN 분류기의 분류 성능을 비교한 결과, SVM 워크로드 분류기가 다른 기계 학습 분류기보다 9% 이상 향상된 분류 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.