Kernel Perceptron Boosting for Effective Learning of Imbalanced Data

불균형 데이터의 효과적 학습을 위한 커널 퍼셉트론 부스팅 기법

  • 오장민 (서울대학교 컴퓨터공학부) ;
  • 장병탁 (서울대학교 컴퓨터공학부)
  • Published : 2001.04.01

Abstract

많은 실세계의 문제에서 일반적인 패턴 분류 알고리즘들은 데이터의 불균형 문제에 어려움을 겪는다. 각각의 학습 예제에 균등한 중요도를 부여하는 기존의 기법들은 문제의 특징을 제대로 파악하지 못하는 경우가 많다. 본 논문에서는 불균형 데이터 문제를 해결하기 위해 퍼셉트론에 기반한 부스팅 기법을 제안한다. 부스팅 기법은 학습을 어렵게 하는 데이터에 집중하여 앙상블 머신을 구축하는 기법이다. 부스팅 기법에서는 약학습기를 필요로 하는데 기존 퍼셉트론의 경우 문제에 따라 약학습기(weak learner)의 조건을 만족시키지 못하는 경우가 있을 수 있다. 이에 커널을 도입한 커널 퍼셉트론을 사용하여 학습기의 표현 능력을 높였다. Reuters-21578 문서 집합을 대상으로 한 문서 여과 문제에서 부스팅 기법은 다층신경망이나 나이브 베이스 분류기보다 우수한 성능을 보였으며, 인공 데이터 실험을 통하여 부스팅의 샘플링 경향을 분석하였다.

Keywords