• Title/Summary/Keyword: 커널 분류기

Search Result 40, Processing Time 0.019 seconds

Modeling of Classifiers by Simple Kernel Update (단순한 커널 갱신을 통한 분류기의 설계)

  • Noh Yung-Kyun;Kim Cheong-Tag;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.79-81
    • /
    • 2006
  • 커널(Kernel)을 이용한 분류 방법은 넓은 마진(large margin) 분류기로서 SVM(Support Vector Machine)을 주로 사용하게 된다 하지만, 이 방법은 라그랑제 파라미터(Lagrange Parameter)의 최적화 과정을 포함함으로써 학습 과정을 쉽지 않게 만든다. 이 최적화 과정은 특히 DNA computing과 같은 단순한 과정의 설계를 통해 결과를 얻어야 하는 새로운 계산 모델에 커널을 적용하고자 했을 경우 큰 장벽이 된다. 본 논문에서는 넓은 마진을 목표로 하는 최적화 과정이 아닌 다른 라벨(label)의 데이터간의 경계 파악을 위한 간단한 커널 갱신 방법의 도입을 통해 분류기를 설계한다. 이 방법을 가우시안 커널에 적용시켜 본 결과, 반복을 통해 데이터의 구조를 찾아갈 수 있는 특성을 보여주며, 결국 넓은 마진의 최적화된 파라미터를 찾게 됨을 보여준다. 본 논문에서는 이 최적화 방법을 DNA 분자를 이용한 커널 생성 모델인 DNA 커널에 적용시켰을 때 잘 알려진 AML/ALL 데이터를 잘 분류해 냄을 보여준다.

  • PDF

Support Vector Machine Classification of Hyperspectral Image using Spectral Similarity Kernel (분광 유사도 커널을 이용한 하이퍼스펙트럴 영상의 Support Vector Machine(SVM) 분류)

  • Choi, Jae-Wan;Byun, Young-Gi;Kim, Yong-Il;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.71-77
    • /
    • 2006
  • Support Vector Machine (SVM) which has roots in a statistical learning theory is a training algorithm based on structural risk minimization. Generally, SVM algorithm uses the kernel for determining a linearly non-separable boundary and classifying the data. But, classical kernels can not apply to effectively the hyperspectral image classification because it measures similarity using vector's dot-product or euclidian distance. So, This paper proposes the spectral similarity kernel to solve this problem. The spectral similariy kernel that calculate both vector's euclidian and angle distance is a local kernel, it can effectively consider a reflectance property of hyperspectral image. For validating our algorithm, SVM which used polynomial kernel, RBF kernel and proposed kernel was applied to land cover classification in Hyperion image. It appears that SVM classifier using spectral similarity kernel has the most outstanding result in qualitative and spatial estimation.

  • PDF

Kernel Pattern Recognition using K-means Clustering Method (K-평균 군집방법을 이요한 가중커널분류기)

  • 백장선;심정욱
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.447-455
    • /
    • 2000
  • We propose a weighted kernel pattern recognition method using the K -means clustering algorithm to reduce computation and storage required for the full kernel classifier. This technique finds a set of reference vectors and weights which are used to approximate the kernel classifier. Since the hierarchical clustering method implemented in the 'Weighted Parzen Window (WP\V) classifier is not able to rearrange the proper clusters, we adopt the K -means algorithm to find reference vectors and weights from the more properly rearranged clusters \Ve find that the proposed method outperforms the \VP\V method for the repre~entativeness of the reference vectors and the data reduction.

  • PDF

Classification of Music Data using Fuzzy c-Means with Divergence Kernel (분산커널 기반의 퍼지 c-평균을 이용한 음악 데이터의 장르 분류)

  • Park, Dong-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • An approach for the classification of music genres using a Fuzzy c-Means(FcM) with divergence-based kernel is proposed and presented in this paper. The proposed model utilizes the mean and covariance information of feature vectors extracted from music data and modelled by Gaussian Probability Density Function (GPDF). Furthermore, since the classifier utilizes a kernel method that can convert a complicated nonlinear classification boundary to a simpler linear one, he classifier can improve its classification accuracy over conventional algorithms. Experiments and results on collected music data sets demonstrate hat the proposed classification scheme outperforms conventional algorithms including FcM and SOM 17.73%-21.84% on average in terms of classification accuracy.

Speaker Identification on Various Environments Using an Ensemble of Kernel Principal Component Analysis (커널 주성분 분석의 앙상블을 이용한 다양한 환경에서의 화자 식별)

  • Yang, Il-Ho;Kim, Min-Seok;So, Byung-Min;Kim, Myung-Jae;Yu, Ha-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.188-196
    • /
    • 2012
  • In this paper, we propose a new approach to speaker identification technique which uses an ensemble of multiple classifiers (speaker identifiers). KPCA (kernel principal component analysis) enhances features for each classifier. To reduce the processing time and memory requirements, we select limited number of samples randomly which are used as estimation set for each KPCA basis. The experimental result shows that the proposed approach gives a higher identification accuracy than GKPCA (greedy kernel principal component analysis).

A Syllable Kernel based Sentiment Classification for Movie Reviews (음절 커널 기반 영화평 감성 분류)

  • Kim, Sang-Do;Park, Seong-Bae;Park, Se-Young;Lee, Sang-Jo;Kim, Kweon-Yang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.202-207
    • /
    • 2010
  • In this paper, we present an automatic sentiment classification method for on-line movie reviews that do not contain explicit sentiment rating scores. For the sentiment polarity classification, positive or negative, we use a Support Vector Machine classifier based on syllable kernel that is an extended model of string kernel. We give some experimental results which show that proposed syllable kernel model can be effectively used in sentiment classification tasks for on-line movie reviews that usually contain a lot of grammatical errors such as spacing or spelling errors.

Comparative Analysis of Classification Methods for Alzheimer's Dementia Patients (알츠하이머 치매환자 분류 방법 비교 분석)

  • Lee, Jae-Kyung;Seo, Jin-Beom;Lee, Jae-Seong;Cho, Young-Bok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.323-324
    • /
    • 2022
  • 전 세계적으로 고령화 사회가 지속됨에 따라 평균수명이 증가하여 고령화 문제가 심각해지고 있는 추세이다. 고령에 속하는 65세 이상 노인들이 자주 발병하는 알츠하이머 치매는 명확한 치료법이 존재하지 않아 발병 전 조기 발견 및 예방이 중요하다. 본 논문에서는 컨볼루션 신경망을 기반으로 한 알츠하이머 치매분류방법을 제안한 논문과, 그래프 합성곱 신경망, 다중 커널 학습 분류기, 기계학습, SVM 분류기 등의 방법으로 알츠하이머 치매 분류에 대한 논문을 소개하고, 각각의 제안 방법 및 특징에 대해 비교분석한다.

  • PDF

Spare Representation Learning of Kernel Space Using the Kernel Relaxation Procedure (커널 이완 절차에 의한 커널 공간의 저밀도 표현 학습)

  • 류재홍;정종철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.817-821
    • /
    • 2001
  • In this paper, a new learning methodology for kernel methods that results in a sparse representation of kernel space from the training patterns for classification problems is suggested. Among the traditional algorithms of linear discriminant function, this paper shows that the relaxation procedure can obtain the maximum margin separating hyperplane of linearly separable pattern classification problem as SVM(Support Vector Machine) classifier does. The original relaxation method gives only the necessary condition of SV patterns. We suggest the sufficient condition to identify the SV patterns in the learning epoches. For sequential learning of kernel methods, extended SVM and kernel discriminant function are defined. Systematic derivation of learning algorithm is introduced. Experiment results show the new methods have the higher or equivalent performance compared to the conventional approach.

  • PDF

Kernel Perceptron Boosting for Effective Learning of Imbalanced Data (불균형 데이터의 효과적 학습을 위한 커널 퍼셉트론 부스팅 기법)

  • 오장민;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.304-306
    • /
    • 2001
  • 많은 실세계의 문제에서 일반적인 패턴 분류 알고리즘들은 데이터의 불균형 문제에 어려움을 겪는다. 각각의 학습 예제에 균등한 중요도를 부여하는 기존의 기법들은 문제의 특징을 제대로 파악하지 못하는 경우가 많다. 본 논문에서는 불균형 데이터 문제를 해결하기 위해 퍼셉트론에 기반한 부스팅 기법을 제안한다. 부스팅 기법은 학습을 어렵게 하는 데이터에 집중하여 앙상블 머신을 구축하는 기법이다. 부스팅 기법에서는 약학습기를 필요로 하는데 기존 퍼셉트론의 경우 문제에 따라 약학습기(weak learner)의 조건을 만족시키지 못하는 경우가 있을 수 있다. 이에 커널을 도입한 커널 퍼셉트론을 사용하여 학습기의 표현 능력을 높였다. Reuters-21578 문서 집합을 대상으로 한 문서 여과 문제에서 부스팅 기법은 다층신경망이나 나이브 베이스 분류기보다 우수한 성능을 보였으며, 인공 데이터 실험을 통하여 부스팅의 샘플링 경향을 분석하였다.

  • PDF

Automatic Identification of Database Workloads by using SVM Workload Classifier (SVM 워크로드 분류기를 통한 자동화된 데이터베이스 워크로드 식별)

  • Kim, So-Yeon;Roh, Hong-Chan;Park, Sang-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.84-90
    • /
    • 2010
  • DBMS is used for a range of applications from data warehousing through on-line transaction processing. As a result of this demand, DBMS has continued to grow in terms of its size. This growth invokes the most important issue of manually tuning the performance of DBMS. The DBMS tuning should be adaptive to the type of the workload put upon it. But, identifying workloads in mixed database applications might be quite difficult. Therefore, a method is necessary for identifying workloads in the mixed database environment. In this paper, we propose a SVM workload classifier to automatically identify a DBMS workload. Database workloads are collected in TPC-C and TPC-W benchmark while changing the resource parameters. Parameters for SVM workload classifier, C and kernel parameter, were chosen experimentally. The experiments revealed that the accuracy of the proposed SVM workload classifier is about 9% higher than that of Decision tree, Naive Bayes, Multilayer perceptron and K-NN classifier.