• Title/Summary/Keyword: 캔틸레버,외팔보

Search Result 3, Processing Time 0.021 seconds

Cantilever Structural Analysis for Optimal Piezoelectric Power Harvesting (캔틸레버 구조해석을 통한 압전소자의 최대 전력량 산출)

  • Lim, Geunsu;Joe, Sungsik;Kim, Suhyun;Park, Woo-Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.31-34
    • /
    • 2013
  • Based on the structural analysis of cantilever and the piezoelectric effect, we propose a new design of piezoelectric cantilever to harvest maximum vibration energy. Geometric parameters of piezoelectric cantilever are optimized according to two different types of cantilever structure. The main factors that affect the harvesting performance of the cantilever was the shape of the cantilever and the load at the free end. The amount of charge is affected by piezoelectric constant and mechanical strain of the cantilever.

Vibration Characteristics and Performance of Cantilever for Non-contact Atomic Force Microscopy (비접촉 원자간력 현미경의 탐침 캔틸레버 진동 특성 및 측정 성능 평가)

  • 박준기;권현규;홍성욱
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.495-502
    • /
    • 2004
  • This paper presents the vibration analysis and the performance evaluation of cantilevers with probing tips for non-contact scanning probe microscopy. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made for the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

A Study on the Design of a Double Cantilever Structure Friction Tester for Precision Friction Measurement (정밀 마찰측정을 위한 이중 캔틸레버 구조 마찰시험기의 설계에 관한 연구)

  • Kang, Won-Bin;Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.125-131
    • /
    • 2018
  • A precision tribometer consisting of a cantilever was designed to measure frictional forces in the micro-Newton range. As frictional forces are measured based on the bending of the cantilever, vibration of the cantilever is the most significant factor affecting the quality of the friction measurement. Therefore, improved design of the tribometer with double cantilevers and a connecting plate that united the two cantilevers mechanically was suggested. For the verification of the modified design of the tribometer, numerical analysis and experiments were conducted. Examination using the finite element method revealed that the tribometer with a double cantilever and a connecting plate exhibited faster damping characteristics than the tribometer with a single cantilever. In the experiment, effectiveness of the double cantilever and connecting plate for vibration reduction was also confirmed. Vibration of the tribometer with double cantilever decreased eight times faster than that of the tribometer with a single cantilever. The faster damping of the double cantilever design is attributed to the mechanical interaction at the contacting surfaces between the cantilever and the connecting plate. Tribotesting using the tribometer with a single cantilever resulted in random fluctuation of frictional forces due to the stick-slip behavior. However, using the tribometer with a double cantilever and connecting plate for the tribotest gave relatively uniform and steady measurement of frictional forces. Increased stiffness owing to using a double cantilever and mechanical damping of the connecting plate were responsible for the stable friction signal.