• Title/Summary/Keyword: 칼륨양이온

Search Result 72, Processing Time 0.025 seconds

Hydrothermal Synthesis and Transition Metal Cations Exchange Characterization of Titanium and [Titanium+Alkali Metals] Substituted-11Å Tobermorites

  • El-Korashy, S.A.
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • Titanium and [titanium+Na(K)] substituted 11${\AA}$ tobermorites solids synthesized under hydrothermal conditions at 180$^{\circ}C$ exhibit cation exchange properties toward heavy transition metal cations, such as Fe$^{2+},\;Zn^{2+},\;Cd^{2+}\;and/or\;Pb^{2+}$. The amount of heavy metal cations taken up by these solids was found in the order: Fe$^{2+}>Zn^{2+}>Cd^{2+}>Pb^{2+}$, and reached maximum at 10% [Ti+K]-substituted tobermorite. The total cation exchange capacity of the 10% Ti+Na (K) - substituted tobermorites synthesized here range from 71 to 89 meq/100 g, and 50-56 meq/100g for Ti-substituted only. Results indicated that 10% [Ti+K] substitution exhibit cation exchange capacity more 2.4 times than the unsubstituted-tobermorite. This is due to the increase of the number of active sites on the exchangers. The incorporation of Ti and/or [Ti+Na(K)] in the lattice structure of synthesized tobermorites is due to exchange of Ti$^{4+}{\Leftrightarrow}2Ca^{2+}\;and/or\;Ti^{4+}+2Na^+(K^+){\Leftrightarrow}3Ca^{2+}$, respectively. The mechanism of Ti and [Ti+Na(K)] incorporations in the crystal lattice of the solids during synthesis and the heavy metal cations uptaken by these solids is studied.

Interpreting Soil Tests for Turfgrass (잔디 토양 분석의 해석)

  • Christians, Nick;Joo, Young-Kyoo;Lee, Jeong-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.2
    • /
    • pp.223-235
    • /
    • 2006
  • Soil testing laboratories unfamiliar with turfgrasses will often overestimate the plant's need for phosphorus and underestimate the need for potassium. This is partly due to differences in rooting between grasses and many garden plants and crops. The grasses are generally more efficient in extracting phosphorus from the soil, reducing their need for phosphorus fertilizer. The fact that crop yield is often the primary objective in field crop production, and is usually of little interest in turfgrass management, may affect soil test interpretation for potassium. Potassium levels above those required for maximum tissue yield of grasses may improve stress tolerance and turfgrasses will usually benefit from higher applications of this element. There are also diffrrences in soil testing philosophies. Some laboratories use the sufficiency level of available nutrients(SLAN) approach, whereas others prefer the basic cation saturation ratio(BCSR) approach. Some will use a combination of the two methods. The use of the BCSR theory easily lends itself to abuse and questionable fertilizer applications and products are sometimes recommended citing imbalances in cation ratios. The usefulness of the BCSR ratio theory of soil testing varies with soil texture and interpretations on tests performed on sand-based media are particularly a problem. Other soil testing problems occur when sand-based media used on sports fields and golf greens contain free calcium carbonate. The ammonium acetate extractant at pH 7.0 dissolves excessive amounts of calcium that can bias cation exchange capacity measurements and measurements of cation ratios. Adjusting the pH of the extractant to 8.1 can improve the accuracy of the testing procedure for calcareous media.

파이렌 이중체 기반 2 킬레이트 결합자리 형광분자에 대한 금속 양이온의 형광 소광 원리 탐색

  • Kim, San;Nam, Yeon-Sik;Im, Jong-Hyeon;Lee, Jin-Yong
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.118-127
    • /
    • 2017
  • 형광화학센서는 형광분자의 화학적으로 유도된 형광의 소광 또는 증광을 통해 생체 등에서 특정 물질을 관찰할 수 있기에 그 활용도가 높다. 본 연구에서는 두 개의 서로 다른 킬레이트 결합자리를 가지는, 파이렌 이중체를 발색단의 형광분자(Pyex)를 이용하여, PET (photoinduced electron transition)와 AID (absorbance intensity decreasing)의 형광 소광 원리에 집중하여, 전자구조계산과 TD (time-dependent) 계산을 근거로 금속 양이온의 형광 소광 원리를 분류하고, 더불어 그에 관여하는 금속 양이온의 원자오비탈까지 탐색하였다. 그 결과 Pyex와 그 칼륨이온 복합체에서는 실험값과 일치하는 형광이, 납과 은 이온 복합체에서는 소광이 나타났다. 구체적으로는 납 이온의 경우 PET를 주된 원인으로 AID와 함께 작용하여 소광을 발생시키고, 은 이온의 경우는 AID에 의해 소광이 일으키는 것으로 밝혀졌다. 또한 납 이온의 p 오비탈이 소광에 관여하는 것으로 볼 수 있는 결과도 나타났다.

  • PDF

ROLE OF POTASSIUM AND MALIC ACID FOR NITRATE TRANSLOCATION AND REDUCTION IN TOBACCO LEAF (담배잎에서 칼륨과 능금산이 질산태질소의 이동 및 환원에 미치는 영향)

  • 이윤환
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.7 no.2
    • /
    • pp.141-149
    • /
    • 1985
  • 뿌리에서 흡수된 질소는 대부분이 질산태이온으로 잎의 엽맥까지 도달하나 엽육에서 급격히 환원되어 유기태질소로 동화한다. 잎의 주맥을 통과하여 세맥까지 질산태질소로 이동되며 전질소의 1/2이상의 양까지 다다르나 엽육에서는 전질소함량이 엽맥의 5배까지 증가되어도 질산태질소는 $10^{-2}$ 정도로 급격히 환원되었다. 칼륨은 엽맥까지 질소와 동반 이동하나 엽육에서의 질산태질소환원에 의하여 이동이 차단되는 현상을 보였다. 엽육에 축적된 칼륨은 능금산의 축전을 촉진하였고 질산환원효소의 활성이 왕성하게 일어나는 하위엽에 높은 농도로 축적되었다.

  • PDF

Determination of Complex Formation Constant of Sodium-Selective Ionophores in Solvent Polymeric Membranes (용매 고분자막 상에 고정된 나트륨 이온선택성 물질의 착물형성상수 결정)

  • Kang, Tae Young;Kim, Sung Bae;Oh, Hyon Joon;Han, Sang Hyun;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.466-473
    • /
    • 2000
  • The complex formation constants (${\beta}_{MLn}$) of potassium and various sodium-selective neutral carriers in solvent polymeric membranes have been determined using solvent polymeric membrane-based optodes and ion-selective electrodes (ISEs). Two different types of PVC-based membranes containing the H^+selective chromoionophore (ETH 5294) with and without a sodium ionophore (4-tert-bntylcalix[4]arenetetraacetic acid tetraethyl ester, ETH 2120, bis[(12-crown-4)methyl] dodecylmethylmalonate or monensin methyl ester) were prepared and their optical responses to either the changes in alkali metal cation (e.g., sodium and potassium) concentrations at a fixed pH (0.05 M Tris-HCl, pH 7.2) or varying pH at a fixed alkali metal cation concentration (0.1 M) were measured. The same type of membranes were also mounted in conventional electrode body and their potentiometric responses to varying pH at a fixed alkali metal cation concentration (0.1 M) were measured. The complex formation constants of the ligand could be calculated from the calibration plots of the relative absorbance vs. the activity ratios of cation and proton ($a_{M^+}/a_{H^+}$) and of the emf vs. pH. It was confirmed that the ratio values of the complex formation constants for the primary and interfering ions are closely related to the experimental selectivity coefficients of ISEs.

  • PDF

Effect of a Hydrothermal Reaction on the Expandibility, Layer Charge, and CEC of Smectite Clay (스멕타이트 점토의 팽창도, 층전하, 양이온 교환능에 대한 열수반응의 영향)

  • Lee, Jae-Owan;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.173-179
    • /
    • 2010
  • In a HLW repository, the buffer is exposed to an elevated temperature due to a radioactive decay and geochemical conditions for a long time and such a hydrothermal condition may cause a significant loss of its barrier function. This study carried out hydrothermal tests with a domestic smectite clay to investigate the changes in the expandibility, layer charge, and cation exchange capacity of the smectite. When the temperature and potassium concentration in solution was increased for the hydrothermal treatments, the expandibility decreased, the layer charge negatively increased, and the CEC also decreased.

Linkage Positions of Oligosaccharides by Low Energy Collision Tandem Mass Spectrometry: Effect of the Addition of Metal Cations (저에너지 충돌 탄뎀 질량분석법을 이용한 올리고당의 연결부위 연구: 금속양이온의 첨가가 미치는 영향)

  • Yoo Yoon, Eunsun
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.8
    • /
    • pp.557-564
    • /
    • 1996
  • FAB CAD MS/MS(Fast Atom Bombardment Collision Activated Dissociation Mass Spectrometry/Mass Spectrometry) was used to study different degree of bond stability according to the linkage positions of alkali cationized $(Na^+, Li^+, K^+, NH_4^+)$ stereoisomeric and synthetic oligosaccharides. The alkali metal cations were much more stable, requiring over -40 eV of collision energy vs. only -10 eV for the protonated forms. Of the cations, the potassium cationized trisaccharides were more stable than the others. They would not yield fragment ions under the conditions of collision available in triple quadrupole. Other cationized species exhibited decreasing stability in the series $Nap^+>Li^+>NH_4^+$ using 0.8 mTorr argon pressure in the collision cell. Metal cations of the oligosaccharides maintained charge principally on the amino sugar as shown by shift of all the fragment ions containing the amino sugar. The reason for the higher stability of the metal cationized form is the formation of crown ether-like bond around metal cations, N-acetyl group on GlcNAc and oxygens on fucose moiety. Depending on the metal sizes and the conformation of linkage-isomeric region, cationized species gave linkage dependent fragment patterns and exhibited stability in the series 1-6 > 1-4 > 1-3 linkage.

  • PDF

Movement for the Various Coated and Uncoated Potassium(K) Fertilizers in the Turfgrass Soils of Golf Course (골프장의 잔디 토양에서 다양한 코팅 및 비코팅 칼륨(K) 비료의 이동성 평가)

  • Kim, Hong-Ki;Han, Seok-Soon;Kwon, Sang-Moon;Kim, Hee-Jung;Woo, Sun-Hee;Lee, Moon-Soon;Baek, Ki-Tae;Lee, Bong-Gyu;Lee, Sang-Sung;Kim, In-Su;Chung, Keun-Yook
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.133-142
    • /
    • 2009
  • This study was initiated to evaluate the K leaching potential in the green soils and K uptake by the turfgrass in the golf course using the K fertilizers. The turfgrass, Floradwarf bermudagrass(Cynodon dactylon L. $P_{ERS}$.) was planted and grown in the mixture of sand and peat moss in this lysimeter study. Eight representative K fertilizers, such as, monopotassium phosphate (MKP), KCL, $K_2SO_4$, $KNO_3$, CKCl, $CK_2SO_4$, $CKNO_3$, and 0-20-20(liquid) were used in this study. Based on the total K quantity of leachate collected during the whole 12 weeks, 0-20-20 is the K fertilizers the most contributing to the leaching of K, then MKP, the second, KCL, the third, and finally $KNO_3$ are K fertilizers contributing to the K leaching. However, most amount of K applied and collected in the lysimeter were leached during the first period of two and four weeks, compared to that of K leached during the second period of six, eight, ten, and twelve weeks. Application of CKCL and $CK_2SO_4$ producted the largest amount of total dry matter, then MKP and KCL, $KNO_3$ and $CKNO_3$, 0-20-20 in second group. However, except $K_2SO_4$, most K fertilizer sources such as MKP, KCL, $KNO_3$, CKCL, $CK_2SO_4$, $CKNO_3$, 0-20-20 showed the largest amount of K uptake, except $K_2SO_4$. Therefore, based on the K leaching, dry matter production, and plant K uptake, it appears that the coated fertilizers, CKCL, $CKNO_3$, and $CK_2SO_4$ are the environmentally sound fertilizers recommended in the turfgrass green soil of golf course.

Effect of Ionic Polymers on Sodium Intake Reduction (이온성 고분자를 이용한 나트륨 섭취 감소 효과)

  • Park, Sehyun;Lee, YoungJoo;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.533-538
    • /
    • 2013
  • Sodium chloride is present in our body fluids, and the blood contains approximately 0.9 wt% salt, which plays an important role in maintaining the osmotic pressure. However, the amount of salt intake has consistently increased, and an excessive intake can be the cause of high blood pressure, etc. In this study, it was investigated in vivo and in vitro whether biocompatible ionic polymers with K or Ca ions can be replaced by Na ions through an ion exchange process to be excreted. Among the polymers, Ca-polystyrene sulfonate, K-polystyrene sulfonate, Ca-carrageenan, and Ca-tamarind had an excellent Na exchange ability in the body temperature, simulated gastric fluid and also simulated intestinal fluid. The mechanism of Na removal by absorption and excretion without changing food taste in the mouth through the insolubility properties of these polymers is expected to be a solution for the current problems related with excess sodium intake.

Effect on active transport of cell membrane model which irradiated by radiation (방사선이 조사된 세포막 모델이 물질의 능동수송에 미치는 영향)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.3
    • /
    • pp.103-110
    • /
    • 2011
  • The effect on active transport of $K^+$ and $Na^+$ of cell membrane model which irradiated by radiation was investigated. The cell membrane model used in this experiment was a $Na^+$ type sulfonated copolymerized membrane of styrene and divinylbenezene. The initial flux of the ion was increased with increase of both $H^+$ ion concentration. In this experiment range(pH $0.5^{-3}$), the initial flux of $K^+$ which was not irradiated by radiation was found to be from $7.9{\times}10^{-4}$ to $7.49{\times}10^{-3}mole/cm^2{\cdot}h$ and that of Na+ from $10.6{\times}10^{-4}$ to $7.68{\times}10^{-3}mole/cm^2{\cdot}h$. The initial flux of $K^+$ which was irradiated by radiation was found to be from $35.0{\times}10^{-4}$ to $42.4{\times}10^{-3}mole/cm^2{\cdot}h$ and that of $Na^+$ from $52.0{\times}10^{-4}$ to $43.3{\times}10^{-3}mole/cm^2{\cdot}h$. The membrane was selective for $K^+$ and the ratio $K^+/Na^+$ was about 1.10. And the driving force of pH of irradiated membrane was significantly increased about 4-5 times than membrane which was not irradiated. As active transport of $K^+$ and $Na^+$ of cell membrane model were abnormal, cell damages were appeared at cell.