• Title/Summary/Keyword: 침전반응

Search Result 701, Processing Time 0.024 seconds

Treatment Features of Fluorine-containing Wastewater Using Calcium as a Precipitant for Its Reuse (처리수(處理水) 재사용(再使用)을 위한 칼슘 침전법(沈澱法)에 의한 불소폐수(弗素廢水) 처리(處理) 특성(特性))

  • Kim, Young-Im;Baek, Mi-Hwa;Kim, Dong-Su
    • Resources Recycling
    • /
    • v.16 no.4
    • /
    • pp.27-32
    • /
    • 2007
  • The characteristics of fluorine removal from wastewater have been investigated by precipitation method using calcium as a precipitant for the purpose of the reuse of treated wastewater. In the conditions of 10 mM of the initial concentration of fluorine and pH 4, the precipitation of fluorine was rapidly progressed within a few minutes after the precipitant was added and the precipitation of fluorine was observed to follow a second order reaction. Also, as the addition of precipitant was increased, the reaction rate constant of fluorine precipitation was found to rise. Postulating that the maximum fluorine removal was attained at pH 4, about 70% of fluorine was precipitated compared with the maximum removal when 10 times of equivalent amount of calcium was employed at pH 2 and the fluorine removal was about 96% compared with its maximum value at pH 3 under the same addition of precipitant. The fluorine precipitation reaction was found to be endothermic and the coexistence of $SiF_6{^{2-}}$ with fluorine resulted in its less removal. Finally, the isoelectric point of the precipitate was examined to be ca. pH 5.

Separation of Lanthanum(III) by Selective Precipitation from Sulfuric Acid Solution Containing Iron(III) (황산철(III)용액에서 란타넘(III)의 선택적 침전 분리)

  • Song, Si Jeong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.31-38
    • /
    • 2021
  • To investigate the separation of La(III) from sulfuric acid solutions containing Fe(III), rare earth double salt precipitation experiments were performed by adding sodium sulfate. In this work, the effect of sodium sulfate, Fe(III), and La(III) concentrations; reaction temperature; and time was investigated. The extent of precipitation of La(III) was proportional to the concentrations of Na+ and SO42- in the solution. As the reaction temperature increased to 100 ℃, the extent of precipitation of La(III) increased. The extent of precipitation of Fe(III) decreased with increasing reaction time. The concentration ratio of Fe(III) to La(III) did not have a significant effect on the precipitation of La(III). Our results indicate that it is possible to separate La(III) from a ferric sulfate solution through selective precipitation by adding sodium sulfate.

환경관련 특허동향 - 약품 혼합조와 침전조 일체형 초고속침전 수처리 장치 및 이를 이용한 수처리 방법(녹스 코리아(주))

  • 한국환경기술인연합회
    • Environmental engineer
    • /
    • s.325
    • /
    • pp.86-93
    • /
    • 2013
  • 본 발명은 약품 혼합조와 침전조 일체형 초고속침전 수처리 장치 및 이를 이용한 수처리 방법에 관한 것으로서, 일반적인 수처리 공정에서 필요한 각각의 다수의 단위 공정들을 단일 처리조 내에서 수행하게 함으로써 약품혼합, 응집반응, 침전, 슬러지 인출 및 처리수의 배수가 시간 간격을 두어 이루어지도록 하여 전체적인 유체의 체류시간이 줄여 최대 30분 이내의 초고속 수처리가 가능하도록 하는 효과를 갖는다. 또한, 약품 혼합조, 반응조 및 침전조를 별도로 구성하지 않고 단일 처리조로 시설을 컴팩트화하여 시설비 및 소요 부지를 줄일 수 있도록 함과 아울러 처리수의 수질을 SS(Suspended Solids) 기준으로 1ppm 이하로 만족시킴으로써 후단의 여과공정이 불필요하여 시설비를 절감할 수 있는 효과를 갖는다. 또한, pH 감지부에 별도의 pH 지시계 세척부를 설치하여 안정적으로 pH 감지가 이루어지도록 하여 약품 주입을 경제적이고 효율적으로 이루어질 수 있도록 하여 수처리에 따른 유지 및 관리 비용을 절감시킬 수 있도록 하는 효과를 갖는다.

  • PDF

Estimation of Geochemical Evolution Path of Groundwaters from Crystalline Rock by Reaction Path Modeling (반응경로 모델링을 이용한 결정질암 지하수의 지구화학적 진화경로 예측)

  • 성규열;박명언;고용권;김천수
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • The chemical compositions of groundwaters from the granite areas mainly belong to Ca-HC0$_{3}$ and Na-HC0$_{3}$type, and some of these belong to Ca-(CI+S0$_{4}$) and Na-(CI+S0$_{4}$) type. Spring waters and groundwaters from anorthosite areas belong to Ca-HC03 and Na-HC03 type, respectively. The result of reaction path modeling shows that the chemical compositions of aqueous solution reacted with granite evolve from initial Ca-CI type, via CaHC0$_{3}$ type, to Na-HC0$_{3}$ type. The result of rain water-anorthosite interaction is similar to evolution path of granite reaction and both of these results agree well with the field data. In the reaction path modeling of rain watergranite/anorthosite reaction, as a reaction is progressing, the activity of hydrogen ion decreases (pH increases). The concentrations of cations are controlled by the dissolution of rock-forming minerals and precipitation and re-dissolution of secondary minerals according to the pH. The continuous addition of granite causes the formation of secondary minerals in the following sequence; gibbsite plus hematite, Mn-oxide, kaolinite, silica, chlorite, muscovite (a proxy for illite here), calcite, laumontite, prehnite, and finally analcime. In the anorthosite reaction, the order of precipitation of secondary minerals is the same as with granite reaction except that there is no silica precipitation and paragonite precipitates instead of analcime. The silica and kaolinite are predominant minerals in the granite and anorthosite reactions, respectively. Total quantities of secondary minerals in the anorthosite reaction are more abundant than those in the granite reaction.

삼산제일광산 폐광석의 풍화와 2차광물의 침전에 관한 광물학적 연구

  • 연규훈;이평구;최상훈;박성원;염승준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.396-399
    • /
    • 2004
  • 산화환경에 노출된 폐광석에 포함되어 있는 황화광물은 산소와 물과의 화학반응을 통해 산화작용을 받게 되고, 이로 인하여 Fe, Mn, Pb, Zn, Cu 및 As등의 원소의 용해반응이 발생할 것으로 예상된다. 그러나 이와 같이 용해된 금속이온은 pH등 환경의 변화에 따라 2차광물(산화광물 및 황산염광물)로 침전되거나 흡착되어 수용액으로부터 제거되어 자연적으로 고정화 될 수 있다. 이처럼 황화광물의 산화작용에 의해 형성된 2차광물에 대한 광물학적 연구는 광산복원을 결정하는데 직접적인 지구화학적 자료로 활용될 수 있다. 삼산제일광산에 방치된 폐광석을 대상으로 XRD, SEM/EDS을 이용하여 광물학적 연구를 수행한 결과 침전과 공침, 흡착 등의 화학반응을 통하여 현재 고정화되고 있는 것이 확인되었다.

  • PDF

Nitrate Removal and Recycling Technique (질산 제거 및 재이용 기술)

  • Lee, Kyoung Hee;Sim, Sang Jun;Choi, Guang Jin;Kim, Young Dae;Woo, Kyoung ja;Cho, Young Sang;Choi, Eui-So
    • Clean Technology
    • /
    • v.3 no.2
    • /
    • pp.87-93
    • /
    • 1997
  • A new process has been developed for nitrate and other salts removals from polluted waters. Alumina cement and calcium oxide served as precipitating agents to remove nitrate with stirring at basic pH. Low content of alumina in the commercialized alumina cements resulted in a increasing in nitrate removal yield. It is found that the compositions of aluminium and calcium are the most important factors in successful nitrate insolubilization. In order to remove high concentration of nitrate in polluted water, multi-stage precipitation was found to be very effective. Sulfate, chloride, and phosphate ions as well as nitrate were also removed by the precipitated reaction. After precipitation, post-treatments including Na2CO3 addition and neutralization with acid alleviated the level of aluminium and calcium in the treated water.

  • PDF

Separation of Tungsten and Vanadium from Alkaline Solution with adding CaCl2 (알칼리 용액 중 CaCl2 첨가에 의한 텅스텐과 바나듐의 분리)

  • Moon, Gyeonghye;Choi, In-hyeok;Park, Kyungho;Kang, Hee-Nam;Kang, Jungshin;Lee, Jin-Young
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.42-49
    • /
    • 2017
  • As a fundamental study for the separation of vanadium and tungsten from the leaching solution obtained from the soda roasting and water leaching process of spent SCR (Selective Catalytic Reduction) catalyst was carried out. The precipitation behaviors of vanadium and tungsten using the artificial solution (V: $1g{\cdot}L^{-1}$, W: $10g{\cdot}L^{-1}$) was investigated depending on temperature, NaOH concentration and the amount of $CaCl_2$ (aq.) added. V (aq.) was selectively precipitated at lower temperature than 293 K while tungsten also was precipitated at higher temperature. Precipitation rate of V and W was decreased by the increasing concentration of NaOH. On the other hand, excess Ca addition induced the increase of precipitation rate for V and W due to the formation of $Ca(OH)_2$ following the pH decline. The response surface methodology was employed to optimize the selective precipitation. Vanadium of 99.5% and tungsten of 0.0% was precipitated at $0.5mol{\cdot}L^{-1}$ of aqueous NaOH and 1 equivalent ratio of $CaCl_2$ at 293 K.

Precipitation Behavior of Ammonium Vanadate from Solution Containing Vanadium (바나듐 함유 수용액의 암모늄바나데이트 침전거동 고찰)

  • Yoon, Ho-Sung;Chae, Sujin;Kim, Chul-Joo;Chung, Kyeong Woo;Kim, Minseuk
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.42-50
    • /
    • 2019
  • In this study, the precipitation reaction of vanadium and ammonium chloride in aqueous solution was investigated in order to recover vanadium. Ammonium metavanadate having a crystal structure of [$NH_4VO_3$] was precipitated from aqueous solution containing vanadium at pH 9.2 ~ 9.4, and ammonium polyvanadate having a crystal structure of [$(NH_4)_2V_6O_{16}$] was precipitated when the pH of the aqueous solution containing vanadium was adjusted with sulfuric acid. Ammonium polyvanadate [$(NH_4)_2V_6O_{16}$] precipitated at a temperature of $80{\sim}90^{\circ}C$ and pH 2, and at a temperature of $40^{\circ}C$ and pH 6 ~ 8 of aqueous solution. In the acidic region of aqueous solution pH 2, the vanadium content of the aqueous solution should be at least 3,000 mg/L and the precipitation temperature should be maintained at $80^{\circ}C$ or higher in order to obtain a precipitation ratio of 99% or more. When the ammonium vanadate was precipitated in the alkaline region, the vanadium content was more than 10,000 mg/L and the precipitation temperature was maintained at $40^{\circ}C$ to increase the precipitation ratio. Aluminum was not precipitated regardless of the vanadium content and pH of the aqueous solution. However, the iron component reacts with ammonium chloride to precipitate into ammonium jarosite. Therefore, Fe component must be preferentially removed in order to increase the recovery of vanadium.

서보광산의 폐광석 내 2차 산화광물의 중금속 고정화에 대한 광물학적 연구

  • 강민주;이평구;박성원
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.43-47
    • /
    • 2003
  • 산화환경에 노출된 폐광석에 포함되어 있는 황화광물은 산소와 물과의 화학반응을 통한 산화작용을 받게 되고 주변 환경에 유해한 금속원소의 용출이 발생될 것으로 예상된다. 그러나 용해된 금속이온은 침전(precipitation), 공침(coprecipitation), 흡착(adsorption)반응에 의해 수용액으로부터 제거되어 자연적으로 고정화될 수 있다. 이번 연구는 서보광산의 폐광석 내 용해된 중금속원소들의 이동을 제한하는 요인으로서 2차 산화광물의 침전 및 용해된 중금속 원소들의 흡착 가능성을 광물학적으로 연구하였다. (중략)

  • PDF

Kinetics of Seed Growth of α-Ferric Oxyhydroxide (α-Ferric oxyhydroxide 입자의 핵성장 반응에 관한 연구)

  • Seul, Soo-Duk;Shin, Dong-Ock
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.602-609
    • /
    • 1997
  • The seed formation and growth of $\alpha$-ferric oxyhydroxide with aerial oxidative precipitation from aqueous solution of ferrous sulfate with KOH, NaOH, $Na_2CO_3$ and $K_2CO_3$ as precipitants have been studied by free pH drift experiment. It has been shown that all precipitants give same particle formation and growth path, and average particle length from KOH and NaOH as precipitants was about 1.5 times shorter than that of $K_2CO_3$ and $Na_2CO_3$. When initial mole ratio, $R_o=[Fe^{2+}]_o/[OH^-]_o$ of KOH was decreased the particle was grown oxyhydroxide seed growth from aqueous solution of ferrous sulfate with KOH has been studied. The influence of the air flow rate, reaction temperature and initial mole ratio, $R_o=[Fe^{2+}]_o/[OH^-]_o$, on the kinetics of seed growth are investigated by static pH experiment. The oxidation rate of seed growth increased with increase in the air low rate, reaction temperature and initial mole patio. The activation energy of seed growth is 16.16 KJ/mol and the rate equation of seed growth can be written as follows: $-\frac{d[Fe^{2+}]}{dt}=1.46{\times}10^4[P_{o2}]^{0.66}[OH^-]^{2.19}exp(-\frac{16.16}{dt})$.

  • PDF