Treatment Features of Fluorine-containing Wastewater Using Calcium as a Precipitant for Its Reuse

처리수(處理水) 재사용(再使用)을 위한 칼슘 침전법(沈澱法)에 의한 불소폐수(弗素廢水) 처리(處理) 특성(特性)

  • Kim, Young-Im (Department Environmental Science and Engineering, Ewha Womans University) ;
  • Baek, Mi-Hwa (Department Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Dong-Su (Department Environmental Science and Engineering, Ewha Womans University)
  • 김영임 (이화여자대학교 환경학과) ;
  • 백미화 (이화여자대학교 환경학과) ;
  • 김동수 (이화여자대학교 환경학과)
  • Published : 2007.08.27

Abstract

The characteristics of fluorine removal from wastewater have been investigated by precipitation method using calcium as a precipitant for the purpose of the reuse of treated wastewater. In the conditions of 10 mM of the initial concentration of fluorine and pH 4, the precipitation of fluorine was rapidly progressed within a few minutes after the precipitant was added and the precipitation of fluorine was observed to follow a second order reaction. Also, as the addition of precipitant was increased, the reaction rate constant of fluorine precipitation was found to rise. Postulating that the maximum fluorine removal was attained at pH 4, about 70% of fluorine was precipitated compared with the maximum removal when 10 times of equivalent amount of calcium was employed at pH 2 and the fluorine removal was about 96% compared with its maximum value at pH 3 under the same addition of precipitant. The fluorine precipitation reaction was found to be endothermic and the coexistence of $SiF_6{^{2-}}$ with fluorine resulted in its less removal. Finally, the isoelectric point of the precipitate was examined to be ca. pH 5.

불소함유 폐수의 처리 후의 재사용 방안과 관련하여 칼슘을 침전제로 한 침전법에 의한 불소제거양상에 관해 조사하였다. 초기 불소농도를 10 mM로 고정한 상태에서 pH 4의 조건에서 칼슘 첨가에 따른 불소의 제거는 반응개시 수 분 이내에 신속히 진행되었으며 반응속도론적으로 2차 반응을 따르는 것으로 파악되었다. 또한 첨가된 칼슘의 양이 증가할수록 반응속도상수가 커지는 것으로 관찰되었다. pH 4에서의 불소제거율을 최대제거율로 설정한 상태에서 pH 2 및 pH 3의 조건에서 칼슘을 당량비 이상으로 첨가하여 불소의 제거율을 관찰한 결과, 칼슘의 첨가량이 당량비의 10 배로 첨가되었을 때 pH 2에 대해서는 불소제거율이 약 70%,그리고 pH 3에서는 약 96%의 불소가 제거되는 것으로 나타났다. 온도의 증가시 칼슘 첨가에 따른 불소의 제거율은 상승하여 침전반응은 흡열반응의 특성을 나타내었다. 불소폐수에 $SiF_6{^{2-}}$가 공존할 경우 불소의 제거율은 감소하였으며 침전반응에 의해 형성된 침전물의 등전점은 pH 5 부근인 것으로 파악되었다.

Keywords

References

  1. Amor, Z., Malki, Suad, Taky, M., Bariou, B., Mameri, N., and Elmidaoui, A., 1998: Optimization off fluoride removal from brackish water by electrodialysis, Desalinaion, 120, pp. 263-271 https://doi.org/10.1016/S0011-9164(98)00223-9
  2. Benefield, L. D., Judkins, J. F., and Weand, B. L., 1982: Process chemistry for water and wastewaer treatment, Prentice-Hall, Inc., U.S.A., pp. 191-198, 269-278, 405-421
  3. Letterman, R.D., 1999: Water Quality & Treatment: A handbook of community water supplies, American Water Works Association, McGraw-Hill, Inc., 5th ed., pp. 278-301
  4. Raichur, A. M., and Basu, M. J., 2001: 'Adsorption of fluoride onto mixed rare earth oxides', Separation and Purification Tech., 24, pp. 121-127 https://doi.org/10.1016/S1383-5866(00)00219-7
  5. Liu, R., Guo, J., and Tang, H., 2002: Adsorption of Fluoride, Phasphate, and Arsenate Ions on a New Type of Ion Exchange Fiber, J. of Colloid and Interface Science, 248, pp. 268-274 https://doi.org/10.1006/jcis.2002.8260
  6. Joshi, S. V.. Mehta, S. H., Rao, A. P., and Rao, A. V., 1992: Estimation of sodium fluoride using HPLC in reverse osmosis experiments, Water Treat., 7(19), pp. 207-211
  7. Simons, R, 1993: Trace element removal from ash dam waters by nanofiltration and diffusion dialysis, Desalination, 89, pp. 325-341 https://doi.org/10.1016/0011-9164(93)80145-D
  8. Kettunen, R., and Keskitalo, P., 2000: Combination of membrane technology and limestone filtration to control drinking water quality, Desalination, 131, pp. 271-283 https://doi.org/10.1016/S0011-9164(00)90025-0
  9. Hichour, M., Persin, F., Sandeaux, J., and Gavach, C., 2000: Fluoride removal from waters by Donnan dialysis, Separation and Purification Tech., 18, pp. 1-11 https://doi.org/10.1016/S1383-5866(99)00042-8
  10. Bose, P. Bose, M. A., and Kumar S., 2002: Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc and cynide, Advances in Environmental Research, 7, pp. 179-195 https://doi.org/10.1016/S1093-0191(01)00125-3
  11. Snoeyink, V. L., and Jenkins, D., 1980: Water Chemistry, John Wiley & Sons, New York, pp. 202, 243-312, 298-305
  12. Hassan, H. H., Fotouhi, B., Sculfort, J. L., Abdel-Rehiem, S. A, Elman M., Ozanam, F., and Chazalviel, J. N., 1996: Effect of alkali-metal and some quaernary-ammonium cations on the anodic dissolution ofp-Si in fluoride media, Journal of Electroanalytical Chemistry, 407, pp. 105-113 https://doi.org/10.1016/0022-0728(95)04485-X
  13. Singh, M., 2002: Treating waste phosphogypsum for cement an plaster manufacture, Cement and Concrete Research, 32, pp. 1033-1038 https://doi.org/10.1016/S0008-8846(02)00723-8
  14. Kim, D. S., and Lee, K. C., 2002: Surface modification of precipitated calcium carbonate using aqueous fluosilicic acid, Applied Surface Science, 202, pp. 15-23 https://doi.org/10.1016/S0169-4332(02)00534-2