DOI QR코드

DOI QR Code

Separation of Lanthanum(III) by Selective Precipitation from Sulfuric Acid Solution Containing Iron(III)

황산철(III)용액에서 란타넘(III)의 선택적 침전 분리

  • Song, Si Jeong (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Lee, Man Seung (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University)
  • 송시정 (목포대학교 공과대학 신소재공학과) ;
  • 이만승 (목포대학교 공과대학 신소재공학과)
  • Received : 2021.02.03
  • Accepted : 2021.02.25
  • Published : 2021.04.30

Abstract

To investigate the separation of La(III) from sulfuric acid solutions containing Fe(III), rare earth double salt precipitation experiments were performed by adding sodium sulfate. In this work, the effect of sodium sulfate, Fe(III), and La(III) concentrations; reaction temperature; and time was investigated. The extent of precipitation of La(III) was proportional to the concentrations of Na+ and SO42- in the solution. As the reaction temperature increased to 100 ℃, the extent of precipitation of La(III) increased. The extent of precipitation of Fe(III) decreased with increasing reaction time. The concentration ratio of Fe(III) to La(III) did not have a significant effect on the precipitation of La(III). Our results indicate that it is possible to separate La(III) from a ferric sulfate solution through selective precipitation by adding sodium sulfate.

철(III)과 란타넘(III)이 혼합된 황산용액에서 황산나트륨에 의한 란타넘 복염의 침전 및 분리를 조사했다. 복염 침전에 영향을 줄 수 있는 여러 요인 중 황산나트륨 및 란타넘(III)의 농도, 반응온도 및 시간, 그리고 철(III) 농도에 대해 조사했다. 용액 중 Na+, SO42- 이온 및 란타넘(III) 농도가 높을수록 희토류 복염의 침전률이 증가했고, 반응온도가 100℃까지 증가함에 따라 란타넘 황산염 이온의 형성을 촉진해 희토류 복염의 침전률이 증가했다. 또한 반응시간이 증가할수록 철(III)의 침전률이 감소해 3시간 이후에는 거의 침전되지 않았고, 철(III) 농도는 복염 침전에 큰 영향을 미치지 않았다. 황산용액에 황산나트륨을 첨가하면 란타넘(III)을 선택적으로 침전시켜 철(III)과 분리할 수 있다.

Keywords

References

  1. Evans, K., 2016 : The History, Challenges, and New Developments in the Management and Use of Bauxite Residue, J. Sustain. Metall., 2, pp.316-331. https://doi.org/10.1007/s40831-016-0060-x
  2. Samal, S., Ray, A. K. and Bandopadhyay, A., 2013 : Proposal for resources, utilization and processes of red mud in India - A review, Int. J. Miner. Process., 118, pp. 43-55. https://doi.org/10.1016/j.minpro.2012.11.001
  3. Hua, Y., Heal, K. V. and Friesl-Hanl, W., 2017 : The use of red mud as an immobilizer for metal/metalloid-contaminated soil: A review, J. Hazard. Mater., 325, pp.17-30. https://doi.org/10.1016/j.jhazmat.2016.11.073
  4. Menzies, N. W., Fulton, I. M. and Morrell, W. J., 2004 : Seawater Neutralization of Alkaline Bauxite Residue and Implication for Revegetation, J. Environ. Qual., 33(5), pp. 1877-1884. https://doi.org/10.2134/jeq2004.1877
  5. Hanahan, C., McConchie, D., Pohl, J., et al., 2004 : Chemistry of Seawater Neutralization of Bauxite Refinery Residues (Red Mud), Environ. Eng. Sci., 21(2), pp.125-138. https://doi.org/10.1089/109287504773087309
  6. Grafe. M., Power, G. and Klauber. C., 2011 : Bauxite residue issues: III. Alkalinity and associated chemistry, Hydrometallurgy, 108(1-2), pp.60-79. https://doi.org/10.1016/j.hydromet.2011.02.004
  7. Narayanan, R. P. N., Kazantzis, N. K. and Emmert, M. H., 2018 : Selective Process Steps for the Recovery of Scandium from Jamaican Bauxite Residue (Red Mud), ACS Sustain. Chem. Eng., 6(1), pp.1478-1488. https://doi.org/10.1021/acssuschemeng.7b03968
  8. A.C. Ni'am, Y.F. Wang, S.W. Chen, et al., 2020 : Simultaneous recovery of rare earth elements from waste permanent magnets (WPMs) leach liquor by solvent extraction and hollow fiber supported liquid membrane, Chem. Eng. Process, 148(107831), pp.1-10.
  9. Kolodynska, D. and Hubicki D. F. Z., 2020 : Evaluation of possible use of the macroporous ion exchanger in the adsorption process of rare earth elements and heavy metal ions from spent batteries solutions, Chem. Eng. Process, 147(107767), pp.1-14.
  10. Provali, A., Agarwal, V. and Lundstrom, M., 2020 : REE(III) recovery from spent NiMH batteries as REE double sulfates and their simultaneous hydrolysis and wet-oxidation, J. Waste. Manag., 107, pp.66-73. https://doi.org/10.1016/j.wasman.2020.03.042
  11. Okamura, H. Mizuno, M., Hirayama, N., et al., 2020 : Synergistic Enhancement of the Extraction and Separation Efficiencies of Lanthanoid(III) Ions by the Formation of Charged Adducts in an Ionic Liquid, Ind. Eng. Chem. Res., 59(1), pp.329-340. https://doi.org/10.1021/acs.iecr.9b04998
  12. Zhu, Z., Pranolo, Y. and Cheng, C. Y., 2015 : Separation of uranium and thorium from rare earths for rare earth production - A review, Miner. Eng., 77, pp.185-196. https://doi.org/10.1016/j.mineng.2015.03.012
  13. Su, J., Gul, X., Gao, Y., et al., 2020 : Recovery of thorium and rare earths from leachate of ion-absorbed rare earth ores radioactive ores residues with N1923 and Cyanex® 572, J. Rare Earths, pp.1-9.
  14. Qi, D., 2018 : Hydrometallurgy of Rare Earths, pp.671-741, 1st Edition, Elsevier, Amsterdam.
  15. Kul, M., Topkaya, Y. and Karakaya, I., 2008 : Rare earth double sulfates from pre-concentrated bastnasite, Hydrometallurgy, 93, pp.129-135. https://doi.org/10.1016/j.hydromet.2007.11.008
  16. Lyman, J. W. and Palmer, G. R., 1993 : Recycling of Rare Earths and Iron from NdFeB Magnet Scrap, High Temp. Mat. Process, 11(1-4), pp. 175-187. https://doi.org/10.1515/htmp.1993.11.1-4.175
  17. Porvali, A., Wilson, B. P. and Lundstrom, M., 2017 : Lanthanide-alkali double sulfate precipitation from strong sulfuric acid NiMH battery waste leachate, Waste. Manage., 71, pp.381-389.
  18. Porvali, A., Agarwal, V. and Lundstrom, M., 2019 : Circulation of Sodium Sulfate Solution Produced During NiMH battery Waste Processing, Mining. Metall. Explor., 36, pp.979-991.
  19. Das, G., Lencka, M.M., Eslamimanesh, A., et al., 2019 : Rare earth sulfates in aqueous systems: Thermodynamic modeling of binary and multicomponent systems over wide concentration and temperature renges, J. Chem. Thermodyn., 131, pp.49-79. https://doi.org/10.1016/j.jct.2018.10.020
  20. Silva, R. G., Morais, C. A. and Oliveira, E. D., 2019 : Selective precipitation of rare earth from non-purified and purified sulfate liquors using sodium sulfate and disodium hydrogen phosphate, Miner. Eng., 134, pp.402-416. https://doi.org/10.1016/j.mineng.2019.02.028
  21. Senanayake, G., Jayasekera S, Bandara A.M.T.S., et al., 2016 : Rare earth metal ion solubility in sulphate-phosphate solutions of pH range-0.5 to 5.0 relevant to processing fluorapatite rich concentrates: Effect of calcium, aluminium, iron and sodium ions and temperature up to 80℃, Miner. Eng., 98, pp.169-176. https://doi.org/10.1016/j.mineng.2016.07.022
  22. Smith, R.M., Martell, A.E., Motekaitis, R.J., 2004 : NIST standard reference database 46. NIST Critical Selected Stability Constants of Metal Complexes Database: Version 8.0.
  23. Wood, S. A., 1990 : The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoretical predictions of speciation in hydrothermal solutions to 350℃ at saturation water vapor pressure, Chem. Geol., 88(1-2), pp.99-125. https://doi.org/10.1016/0009-2541(90)90106-H
  24. Spedding, F. H. and Jaffe, S., 1954 : Conductances, Solubilities and Ionization Constants of Some Rare Earth Sulfates in Aqueous Silutions at 25°, J. Am. Chem. Soc., 76(3), pp.882-884. https://doi.org/10.1021/ja01632a073
  25. Turner, D. R., Whitfield, M. and Dickson, A. G., 1981 : The equilibrium speciation of dissolved components in freshwater and sea water at 25℃ and 1 atm pressure, Geochim. Cosmochim. Acta, 45(6), pp.855-881. https://doi.org/10.1016/0016-7037(81)90115-0
  26. Chen, S., Zhao, L., Wang, M., et al., 2020 : Effects of iron and temperature on solubility of light rare earth sulfates in multicomponent system of Fe2(SO4)3-H3PO4-H2SO4 synthetic solution, J. Rare Earth., 38(11), pp. 1243-1250. https://doi.org/10.1016/j.jre.2019.11.014