References
- Evans, K., 2016 : The History, Challenges, and New Developments in the Management and Use of Bauxite Residue, J. Sustain. Metall., 2, pp.316-331. https://doi.org/10.1007/s40831-016-0060-x
- Samal, S., Ray, A. K. and Bandopadhyay, A., 2013 : Proposal for resources, utilization and processes of red mud in India - A review, Int. J. Miner. Process., 118, pp. 43-55. https://doi.org/10.1016/j.minpro.2012.11.001
- Hua, Y., Heal, K. V. and Friesl-Hanl, W., 2017 : The use of red mud as an immobilizer for metal/metalloid-contaminated soil: A review, J. Hazard. Mater., 325, pp.17-30. https://doi.org/10.1016/j.jhazmat.2016.11.073
- Menzies, N. W., Fulton, I. M. and Morrell, W. J., 2004 : Seawater Neutralization of Alkaline Bauxite Residue and Implication for Revegetation, J. Environ. Qual., 33(5), pp. 1877-1884. https://doi.org/10.2134/jeq2004.1877
- Hanahan, C., McConchie, D., Pohl, J., et al., 2004 : Chemistry of Seawater Neutralization of Bauxite Refinery Residues (Red Mud), Environ. Eng. Sci., 21(2), pp.125-138. https://doi.org/10.1089/109287504773087309
- Grafe. M., Power, G. and Klauber. C., 2011 : Bauxite residue issues: III. Alkalinity and associated chemistry, Hydrometallurgy, 108(1-2), pp.60-79. https://doi.org/10.1016/j.hydromet.2011.02.004
- Narayanan, R. P. N., Kazantzis, N. K. and Emmert, M. H., 2018 : Selective Process Steps for the Recovery of Scandium from Jamaican Bauxite Residue (Red Mud), ACS Sustain. Chem. Eng., 6(1), pp.1478-1488. https://doi.org/10.1021/acssuschemeng.7b03968
- A.C. Ni'am, Y.F. Wang, S.W. Chen, et al., 2020 : Simultaneous recovery of rare earth elements from waste permanent magnets (WPMs) leach liquor by solvent extraction and hollow fiber supported liquid membrane, Chem. Eng. Process, 148(107831), pp.1-10.
- Kolodynska, D. and Hubicki D. F. Z., 2020 : Evaluation of possible use of the macroporous ion exchanger in the adsorption process of rare earth elements and heavy metal ions from spent batteries solutions, Chem. Eng. Process, 147(107767), pp.1-14.
- Provali, A., Agarwal, V. and Lundstrom, M., 2020 : REE(III) recovery from spent NiMH batteries as REE double sulfates and their simultaneous hydrolysis and wet-oxidation, J. Waste. Manag., 107, pp.66-73. https://doi.org/10.1016/j.wasman.2020.03.042
- Okamura, H. Mizuno, M., Hirayama, N., et al., 2020 : Synergistic Enhancement of the Extraction and Separation Efficiencies of Lanthanoid(III) Ions by the Formation of Charged Adducts in an Ionic Liquid, Ind. Eng. Chem. Res., 59(1), pp.329-340. https://doi.org/10.1021/acs.iecr.9b04998
- Zhu, Z., Pranolo, Y. and Cheng, C. Y., 2015 : Separation of uranium and thorium from rare earths for rare earth production - A review, Miner. Eng., 77, pp.185-196. https://doi.org/10.1016/j.mineng.2015.03.012
- Su, J., Gul, X., Gao, Y., et al., 2020 : Recovery of thorium and rare earths from leachate of ion-absorbed rare earth ores radioactive ores residues with N1923 and Cyanex® 572, J. Rare Earths, pp.1-9.
- Qi, D., 2018 : Hydrometallurgy of Rare Earths, pp.671-741, 1st Edition, Elsevier, Amsterdam.
- Kul, M., Topkaya, Y. and Karakaya, I., 2008 : Rare earth double sulfates from pre-concentrated bastnasite, Hydrometallurgy, 93, pp.129-135. https://doi.org/10.1016/j.hydromet.2007.11.008
- Lyman, J. W. and Palmer, G. R., 1993 : Recycling of Rare Earths and Iron from NdFeB Magnet Scrap, High Temp. Mat. Process, 11(1-4), pp. 175-187. https://doi.org/10.1515/htmp.1993.11.1-4.175
- Porvali, A., Wilson, B. P. and Lundstrom, M., 2017 : Lanthanide-alkali double sulfate precipitation from strong sulfuric acid NiMH battery waste leachate, Waste. Manage., 71, pp.381-389.
- Porvali, A., Agarwal, V. and Lundstrom, M., 2019 : Circulation of Sodium Sulfate Solution Produced During NiMH battery Waste Processing, Mining. Metall. Explor., 36, pp.979-991.
- Das, G., Lencka, M.M., Eslamimanesh, A., et al., 2019 : Rare earth sulfates in aqueous systems: Thermodynamic modeling of binary and multicomponent systems over wide concentration and temperature renges, J. Chem. Thermodyn., 131, pp.49-79. https://doi.org/10.1016/j.jct.2018.10.020
- Silva, R. G., Morais, C. A. and Oliveira, E. D., 2019 : Selective precipitation of rare earth from non-purified and purified sulfate liquors using sodium sulfate and disodium hydrogen phosphate, Miner. Eng., 134, pp.402-416. https://doi.org/10.1016/j.mineng.2019.02.028
- Senanayake, G., Jayasekera S, Bandara A.M.T.S., et al., 2016 : Rare earth metal ion solubility in sulphate-phosphate solutions of pH range-0.5 to 5.0 relevant to processing fluorapatite rich concentrates: Effect of calcium, aluminium, iron and sodium ions and temperature up to 80℃, Miner. Eng., 98, pp.169-176. https://doi.org/10.1016/j.mineng.2016.07.022
- Smith, R.M., Martell, A.E., Motekaitis, R.J., 2004 : NIST standard reference database 46. NIST Critical Selected Stability Constants of Metal Complexes Database: Version 8.0.
- Wood, S. A., 1990 : The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoretical predictions of speciation in hydrothermal solutions to 350℃ at saturation water vapor pressure, Chem. Geol., 88(1-2), pp.99-125. https://doi.org/10.1016/0009-2541(90)90106-H
- Spedding, F. H. and Jaffe, S., 1954 : Conductances, Solubilities and Ionization Constants of Some Rare Earth Sulfates in Aqueous Silutions at 25°, J. Am. Chem. Soc., 76(3), pp.882-884. https://doi.org/10.1021/ja01632a073
- Turner, D. R., Whitfield, M. and Dickson, A. G., 1981 : The equilibrium speciation of dissolved components in freshwater and sea water at 25℃ and 1 atm pressure, Geochim. Cosmochim. Acta, 45(6), pp.855-881. https://doi.org/10.1016/0016-7037(81)90115-0
- Chen, S., Zhao, L., Wang, M., et al., 2020 : Effects of iron and temperature on solubility of light rare earth sulfates in multicomponent system of Fe2(SO4)3-H3PO4-H2SO4 synthetic solution, J. Rare Earth., 38(11), pp. 1243-1250. https://doi.org/10.1016/j.jre.2019.11.014