• Title/Summary/Keyword: 측지요소

Search Result 31, Processing Time 0.02 seconds

Geodesic Shape Finding Algorithm for the Pattern Generation of Tension Membrane Structures (막구조물의 재단도를 위한 측지선 형상해석 알고리즘)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • Patterning with a geodesic line is essential for economical or efficient usage of membrane materialsin fabric tension membrane structural engineering and analysis. The numerical algorithm to determine the geodesic line for membrane structures is generally classified into two. The first algorithm finds a non-linear shape using a fictitious geodesic element with an initial pre-stress, and the other algorithm is the geodesic line cutting or searching algorithm for arbitrarily curved 3D surface shapes. These two algorithms are still being used only for the three-node plane stress membrane element, and not for the four-node element. The lack of a numerical algorithm for geodesic lines with four-node membrane elements is the main reason for the infrequent use of the four-node membrane element in membrane structural engineering and design. In this paper, a modified numerical algorithm is proposed for the generation of a geodesic line that can be applied to three- or four-node elements at the same time. The explicit non-linear static Dynamic Relaxation Method (DRM) was applied to the non-linear geodesic shape-finding analysis by introducing the fictitiously tensioned 'strings' along the desired seams with the three- or four-node membrane element. The proposed algorithm was used for the numerical example for the non-linear geodesic shape-finding and patterning analysis to demonstrate the accuracy and efficiency, and thus, the potential, of the algorithm. The proposed geodesic shape-finding algorithm may improve the applicability of the four-node membrane element for membrane structural engineering and design analysis simultaneously in terms of the shape-finding analysis, the stress analysis, and the patterning analysis.

Summarized Reviews on Geodetic Coordinate System and Map Projection for Practitioners in Exploration Geophysics (물리탐사 실무자를 위한 측지 좌표계와 지도 투영의 이해)

  • Lee, Seong Kon
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.236-248
    • /
    • 2016
  • In this review, the basic concepts of geodetic coordinate system and map projection are explained to practitioners in exploration geophysicists to enhance the understanding of geographic and projected coordinate system. The fundamental elements such as earth ellipsoid, geoid, geocentric and geodetic latitudes, rhumb line, and great circle are dealt with in detail. The geocentric and geodetic coordinate systems are also summarized neatly, together with coordinate conversion formulae. In addition, the concept and technique for datum transforms between local and world datum are presented, with special emphasis on Korean Geodetic System.

A study on the coordinates conversion procedures to activate the transformation of local into world geodetic reference system (세계측지계 전환활성화를 위한 변환방법 연구)

  • Hong, Chang-Ki;Kwon, Jay-Hyoun;Lee, Hyun-Jik;Lee, Won-Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.677-682
    • /
    • 2009
  • According to the revised law of survey, all the geographic information data including 1/1,000 digital topographic maps have to be converted to world geodetic reference system by the end of 2009. National Geographic Information Institute (NGII) formulated the policy to promote the conversion from local geodetic reference system to world geodetic reference system. However, the current conversion rate is lower than planned due to some impeding factors. Therefore, in this paper, those impeding factors are investigated and then efficient conversion strategies are established and provided. The research involves the validation of affine transformation, the determination of critical value for outlier detection and optimal number of common control points for coordinate conversion, and the treatment of old and new control points.

Accuracy of the Loran-C Fix in Cheju Areas (제주지역에서의 Loran-C 위치의 정도)

  • Kim, Gwang-Hong;Sim, Hyeong-Il;Jang, Chung-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.2
    • /
    • pp.123-130
    • /
    • 1985
  • This paper was conducted for the purpose of evaluating the accuracy of the observed time difference in Loran-C when the ground wave propagated on the surface included both land sea. The time difference of X and Y station in North East Pacific Chain GRI 5970 was measured at 25 points in Cheju areas. The results obtained are as follows: (1) The errors of time difference for M-X pair are increased when the Loran-C wave propagates above 500m heights of Hanla mountain on propagation path between the observed point and master or X, Y slave station. (2) The errors of time difference for M-X pair are able to decrease by way of correction for the propagation velocity and the geodetic datum, but errors of the time difference for M-Y pair very irregularly because irregular terrain include in propagation path from X station and propagation path from Y station is twice longer than X station. (3) It is confirmed that accuracy of Loran-C fix can elevate by the way of all correction for a geodetic datum transformation, the propagation velocity with refractive index of radio wave and the propagation velocity over land.

  • PDF

National Datum Transformation Parameters of South Korea Using Weighted Parameter Constraints (가중변수법에 의한 국가좌표계 변환요소의 산정)

  • 이영진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.1
    • /
    • pp.29-39
    • /
    • 1997
  • The need of transformation parameters from local geodetic datums to a geocentric coordinate system is becoming more common, with the increasing application of satellite positioning techniques to LIS/GIS survey with cadastral management. In this paper, the national transformation parameters between the Korean geodetic coordinates which is based on the Bessel 1841 ellipsoid and the WGS84 ellipsoid are determined by the least square methods with weighted parameter constraints. Three-dimensional geocentric coordinates are based on GPS observation at 31 stations in the geodetic network, the datum parameters are computed within a standard deviation of less than 1 meter. In South Korea, the national transformation parameters with Bessel geoid-heights are useful for GPS baseline processing and for middle-scale map/database transformation.

  • PDF

The Coordinate Transformation Between Korean Geodetic System and WGS 84 for the Practical Use of GPS (II) (GPS 실용화를 위한 우리나라 측지계와 WGS 84의 좌표변환(II))

  • 박필호;박종욱;강준묵
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.1
    • /
    • pp.37-45
    • /
    • 1993
  • We research on the coordinate transformation between Korean geodetic system and WGS 1984. We made the wide area an object of our research. This area covers the range of longitude $1^\circ$ 32'and latitude $1^\circ$ 7'and is four times wider than a first stage research published in 1992. For this research, we performed GPS observations at 10 control point (seven astrogeodetic points, three triangulation points) and eight banch marks nearby control points, and then transformed the coordinates of WGS 84 to Korean geodetic system using the 7 parameter method, Molodensky method and MRE method. From this test, we compared the precision of the coordinate transformation by each method and checked which method is more applicable to Korea. We could find that the precision by 7 parameter method is three times better than the other methods and that the coordinate transformation by 7 parameter method is possible with the precision of 0".017, 0".016, 0.329 m in latitude, longitude and height. We could check and correct the height blunder of the control points by the bench marks nearby control point. We also could find the precision of coordinate transformation is more improved by the correction of height blunder.t blunder.

  • PDF

Combined Adjustment of Geodetic Levelling Net in Korea (우리나라 측지수준망의 조합조정)

  • 백은기;김원익
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 1989
  • The adjustment of levelling net is being done to the order of nets independently by using the least square method. For the small size net, it has difficulties in verification and statistical analysis of the net since the degree of freedom is low At the same time, it is also difficult to evaluate the error of lower order net correctly. The aim of this study is to analyse the properties of combined adjustment method compared with the independent adjustment method by using the data which have been measured during 1967-1987. Another aim is to analyse the influences of normal orthometric correction and changes of datum. Finally, Korean leveling net has been evaluated by applying real redundancy and variance component estimation.

  • PDF

ADVANTAGE OF USING FREE NETWORK ADJUSTMENT TECHNIQUE IN THE CRUSTAL MOVEMENT MONITORING GEODETIC NETWORKS

  • AhmedM.Hamdy;Jo,Bong-Gon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • There are numerous adjustment techniques that deal with the adjustment of geodetic networks but the least squares adjustment is the most common one. During the network adjustment procedure two techniques can be used, the free network adjustment technique and the constrained network adjustment technique. In order to determine the optimum technique for adjusting the geodetic networks, which used for the geodynamical purposes, data from two different geodetic networks "Sinai geodetic network, Egypt, and HGN network, South Korea" had been examined. The used networks had a different configuration and located in different areas with different seismic activity. The results show that both techniques have a high accuracy and no remarkable differences in terms of RMS. On the contrary, the resulted coordinates shows that the constrained network adjustment technique not only cause a remarkable distortion in the station final coordinates but also if the fixed points that define the datum parameters are changed different solutions for the coordinates will be determined. This distortion affect not only in the determination of point displacement but also in the estimation of the deformation parameters, which play a significant role in the geodynamical interpretation of results. Comparing the results which obtained from both techniques with the widely known geodynamical models of the area reviles that the free network adjustment technique results are clearly match with these models, while those obtained from the constrained technique didn’t match at all. By considering the results it seams to be that the free network adjustment technique is the optimum technique, which can be used for the geodetic network adjustment.

  • PDF

Geoid Models Referred to the Bessel Ellipsoid of South Korea (벳셀타원체 기준의 남한지역 지오이드 모델(KGM95))

  • 이영진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.125-133
    • /
    • 1995
  • The geoidal heights of a country may be computed from astrogedetic, gravimetric or satellite data. In this paper, the geoid models to the Bessel ellipsoid(KGM95-A) have been determined by the astrogedetic method, which is surface fitting techniques using deflections of the vertical and geoid height constraints. Transformation equations and the gravimetric geocentric geoid(KGM93-C) were applied to obtain the geoid height referred to the Tokyo Datum of the Korean geodetic network, the comparison of the astrogedetic results and discussions of the geoid information were added.

  • PDF

A Study on Cutting Pattern Generation of Membrane Structures Using Spline Curves (스플라인 곡선을 이용한 막구조물의 재단도 작성에 관한 연구)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.109-119
    • /
    • 2012
  • For membrane structure, there are three main steps in design and construction, which are form finding, statistical load analysis, and cutting patterning. Unlike the first two stages, the step of cutting pattern involves the translation of a double-curved surface in 3D space into a 2D plane with minimal error. For economic reasons, the seam lines of generated cutting patterns rely greatly on the geodesic line. Generally, as searching regions of the seam line are plane elements in the step of shape analysis, the seam line is not a smooth curve, but an irregularly divided straight line. So, it is how we make an irregularly divided straight line a smooth curve that defines the quality of the pattern. Accordingly, in this paper, we analyzed interpolation schemes using spline, and apply these methods to cutting pattern generation on the curved surface. To generate the pattern, three types of spline functions were used, i.e., cubic spline function, B-spline, and least-square spline approximation, and simple model and the catenary-shaped membrane was adopted to examine the result of generation. The result of comparing the approximation curves by the number of elements and the number of extracted nodes of simple model revealed that the seam line for less number of extracted nodes with large number of elements were more efficient, and the least-square spline approximation provided smoother seam line than other methods.