• Title/Summary/Keyword: 측위 시스템

Search Result 599, Processing Time 0.031 seconds

Availability Evaluation of Network DGPS Positioning for Various Facilities Management In Dense Housing Area (주택가 밀집지역에서의 각종 시설물 관리를 위한 네트워크 DGPS 측위의 가용성 평가)

  • Kim, In-Seup
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.93-99
    • /
    • 2010
  • Since the facility management for various facilities in urban area are conducted by general managers who have poor knowledge for surveying technology, it is not easy to trace the exact location of the facility in a short time with the GIS map only by themselves in the field. In order to improve it, VRS-RTK or SBAS DGPS system integrated with UMPC and PDA which is uploaded GIS field software are being used recently however lot of difficulties are still existed with the GPS positioning in urban area due to the lack of visible satellites, no reception of correction data and multipath error by the interruption of the high buildings and houses etc. Therefore, in this study, we applied with Network DGPS system which allows better reception of satellite signal and correction data even in dense housing areas with the use of GNSS receiver and CDMA mobile phone. Based on the analysis of field data, it was confirmed that standard deviations of the Network DGPS positioning are 0.3 to 0.84m with a very high positioning rate even in dense housing areas. Therefore, it was concluded that the Network DGPS system could be used widely to fast and accurate positioning for various facilities management works in dense housing areas in the future.

Development of a Vehicle Positioning Algorithm Using Reference Images (기준영상을 이용한 차량 측위 알고리즘 개발)

  • Kim, Hojun;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1131-1142
    • /
    • 2018
  • The autonomous vehicles are being developed and operated widely because of the advantages of reducing the traffic accident and saving time and cost for driving. The vehicle localization is an essential component for autonomous vehicle operation. In this paper, localization algorithm based on sensor fusion is developed for cost-effective localization using in-vehicle sensors, GNSS, an image sensor and reference images that made in advance. Information of the reference images can overcome the limitation of the low positioning accuracy that occurs when only the sensor information is used. And it also can acquire estimated result of stable position even if the car is located in the satellite signal blockage area. The particle filter is used for sensor fusion that can reflect various probability density distributions of individual sensors. For evaluating the performance of the algorithm, a data acquisition system was built and the driving data and the reference image data were acquired. Finally, we can verify that the vehicle positioning can be performed with an accuracy of about 0.7 m when the route image and the reference image information are integrated with the route path having a relatively large error by the satellite sensor.

Vision-based Food Shape Recognition and Its Positioning for Automated Production of Custom Cakes (주문형 케이크 제작 자동화를 위한 영상 기반 식품 모양 인식 및 측위)

  • Oh, Jang-Sub;Lee, Jaesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1280-1287
    • /
    • 2020
  • This paper proposes a vision-based food recognition method for automated production of custom cakes. A small camera module mounted on a food art printer recognizes objects' shape and estimates their center points through image processing. Through the perspective transformation, the top-view image is obtained from the original image taken at an oblique position. The line and circular hough transformations are applied to recognize square and circular shapes respectively. In addition, the center of gravity of each figure are accurately detected in units of pixels. The test results show that the shape recognition rate is more than 98.75% under 180 ~ 250 lux of light and the positioning error rate is less than 0.87% under 50 ~ 120 lux. These values sufficiently meet the needs of the corresponding market. In addition, the processing delay is also less than 0.5 seconds per frame, so the proposed algorithm is suitable for commercial purpose.

How sun spot activity affects on positioning accuracy?: Case study of solar storm (태양 흑점활동이 측위오차에 미치는 영향: 태양폭풍 사례연구)

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.27-28
    • /
    • 2011
  • A solar flares have the 11-year cycle and release a large energy which may produce coronal mass ejections (CME). The NOAA (National Oceanic and Atmospheric Administration) predicted that the sun spot activity will be maximized in 2013-2014. A strong solar flare can cause the disturbance of global positioning system including various communication of TV, radio broadcasting. The actual solar storm in 1989 caused power outages in Canada during 9 hours and about 600 million people had experienced a blackout. Such a solar storm can shorten the GPS satellite's life span about 5 to 10 years which can be resulted in economic loss considering the amount of multi-billion won. This paper analyzed the recent solar storm of X-class occurred on 15th of February about 10:45 this year that was reached Korea (Bohyun observatory) on 18th of February about 10:30 (local time), and compared with the data of before and after a week. The proton data of 18th of February considered that the solar strom reached on earth showed a fluctuation compared to the data of before and after a week. The positioning results at Daejeon also showed higher positioning error compared to the data of before and after a week results.

  • PDF

How sun spot activity affects on positioning accuracy?: Case study of solar storm (태양 흑점활동이 측위오차에 미치는 영향: 태양폭풍 사례연구)

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.35 no.6
    • /
    • pp.477-482
    • /
    • 2011
  • Solar flares have the 11-year cycle and release a large energy which may produce coronal mass ejections (CME). The NOAA (National Oceanic and Atmospheric Administration) predicted that the sun spot activity will be maximized in 2013-2014. A strong solar flare can cause the disturbance of global positioning system including various communication of TV, radio broadcasting. The actual solar storm in 1989 caused power outages in Canada during 9 hours and about 600 million people had experienced a blackout. Such a solar storm can shorten the GPS satellite's life span about 5 to 10 years which can resulted in economic loss considering the amount of multi-billion won. This paper analyzed the influence of recent X-class solar storm occurred on 15th of February about 10:45 this year that was reached Korea (Bohyun observatory) on 18th of February about 10:30 (01:30 - UTC), and compared with the data before and after a week. The proton data of 18th of February considered that the solar storm reached on earth showed a fluctuation compared to the data before and after a week. The positioning results at Daejeon and Seoul of Korea also showed higher positioning error compared to the data before and after a week results.

GNSS Techniques for Enhancing Flight Safety of UAS (무인항공기 안전성 강화를 위한 위성항법시스템 적용 방안)

  • Park, Je-hong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.58-65
    • /
    • 2017
  • Global navigation satellite system (GNSS) has a weakness of signal integrity caused by broadcasting type data transmitting direct to user from navigation satellite. Loss of GNSS signal integrity can make a catastrophic event in the operation of unmanned aerial system (UAS) because position decision is only depended on GNSS. So it is required to apply alternative method to reduce a risk and to guarantee a GNSS signal integrity for UAS operation. This paper addressed the reason of loosing GNSS signal integrity, the effectiveness of signal jamming/spoofing and GNSS application trend for UAS. Also suggested the flight safety enhancing method in case of GNSS signal jamming for UAS as technical and political approaches.

Accuracy Evaluation of VRS RTK Surveys Inside the GPS CORS Network Operated by National Geographic Information Institute (국토지리정보원 VRS RTK 기준망 내부 측점 측량 정확도 평가)

  • Kim, Hye-In;Yu, Gi-Sug;Park, Kwan-Dong;Ha, Ji-Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.139-147
    • /
    • 2008
  • The positioning accuracies tend to deteriorate as the distance between the rover and the reference station increases in the Real-Time Kinematic (RTK) surveys using Global Positioning System (GPS). To solve this problem, the National Geographic Information Institute (NGII) of Korea has installed Virtual Reference System (VRS), which is one of the network-based RTK systems. In this study, we conducted the accuracy tests of the VRS-RTK surveys. We surveyed 50 control points inside the NGII's GPS Continuously Operating Reference Stations (CORS) network using the VRS-RTK system, and compared the results with the published coordinates to verify the positioning accuracies. We also conducted the general RTK surveys at the same control points. The results showed that the positioning accuracy of the VRS-RTK was comparable to that of the general RTK, because the horizontal positioning accuracy was 3.1 cm while that of general RTK was 2.0 cm. Also the vertical positioning accuracy of VRS-RTK was 6.8 cm.

Design of a Vehicle-Mounted GPS Antenna for Accurate Positioning (차량 정밀 측위용 이중대역 GPS 안테나 설계)

  • Pham, Nu;Chung, Jae-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.145-150
    • /
    • 2016
  • The capability of accurate positioning and tracking is necessary to implement an unmanned autonomous driving system. The moving-baseline GPS Technique is a promising candidate to mitigate positioning errors of conventional GPS system. It provides accurate positioning data based on the phase difference between received signals from multiple GPS antennas mounted on the same platform. In this paper, we propose a dual-band dual-circularly-polarized antenna suitable for the moving-baseline GPS. The proposed antenna operates at GPS L1 and L2 bands, and fed by the side of the antenna instead of the bottom. The antenna is firstly designed by calculating theoretical values of key parameters, and then optimized by means of 3D full-wave simulation software. Simulation and measurement results show that the optimized antenna offers 6.1% and 3.7% bandwidth at L1 and L2, respectively, with axial ratio bandwidth of more than 1%. The size of the antenna is $73mm{\times}73mm{\times}6.4mm$, which is small and low-profile.

Positioning by using Speed and GeoMagnetic Sensor Data base on Vehicle Network (차량 네트워크 기반 속도 및 지자기센서 데이터를 이용한 측위 시스템)

  • Moon, Hye-Young;Kim, Jin-Deog;Yu, Yun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2730-2736
    • /
    • 2010
  • Recently, various networks have been introduced in the car of the internal and external sides. These have been integrated by one HMI(Human Machine Interface) to control devices of each network and provide information service. The existing vehicle navigation system, providing GPS based vehicle positioning service, has been included to these integrated networks as a default option. The GPS has been used to the most universal device to provide position information by using satellites' signal. But It is impossible to provide the position information when the GPS can't receive the satellites' signal in the area of tunnel, urban canyon, or forest canopy. Thus, this paper propose and implement the method of measuring vehicle position by using the sensing data of internal CAN network and external Wi-Fi network of the integrated car navigation circumstances when the GPS doesn't work normally. The results obtained by implementation shows the proposed method works well by map matching.

LED Chromaticity-Based Indoor Position Recognition System for Autonomous Driving (자율 주행을 위한 LED 색도 기반 실내 위치 인식 시스템)

  • Jo, So-hyeon;Woo, Joo;Byun, Gi-sig;Jeong, Jae-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.603-605
    • /
    • 2021
  • With the expansion of the indoor service-providing robot market and the electrification of automobiles, research on autonomous driving is being actively conducted. In general, in the case of outside, the location is mainly recognized through GPS, and location positioning is performed indoors using technologies such as WiFi, UWB (Ultra-Wide Band), VLP, LiDAR, and Vision. In this paper, we introduce a system for location-positioning using LED lights with different color temperatures in an indoor environment. After installing LED lights in a simulated environment such as a tunnel, it was shown that information about the current location can be obtained through the analysis of chromaticity values according to location. Through this, it is expected to be able to obtain information about the location of the vehicle in the tunnel and the movement of the device in a room such as a warehouse or a factory.

  • PDF