• Title/Summary/Keyword: 측위정확도

Search Result 339, Processing Time 0.025 seconds

The GNSS Accuracy Analysis according to Data Processing S/W (GNSS 자료처리 S/W에 따른 정확도 분석)

  • Lee, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.628-633
    • /
    • 2018
  • The accuracy of GNSS depends on several factors from the equipment used in data processing because GNSS positioning can be used differently depending on the accuracy required. In the case of the control point surveying requiring high accuracy, GNSS surveying is performed using the relative positioning method, and the observation time and data processing s/w are used differently depending on the class of the control points. On the other hand, the accuracy of academic software depends on the skill of the user, so it may be better to use commercial software in the case of a short baseline. In this study, the results of GNSS survey data were compared using scientific software and commercial software. The results showed that the horizontal position showed a difference of less than 2 cm and the height showed a difference of less than 5 cm. These differences were found to be in the error ranges specified in the unified control point survey regulations. Based on the above results, the commercial s/w can be used for GNSS data processing at the midterm baseline rather than the long baseline.

A New Design Method of a Code Tracking Loop using C/N0 in a GPS Receiver (C/N0 추정치를 이용한 GPS 수신기의 코드 추적 루프 설계)

  • Lim, Deok-Won;Jin, Mi-Hyun;Lee, Sang-Jeong;Hoe, Moon-Boem;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.495-501
    • /
    • 2011
  • The characteristics of a discriminator estimating a tracking error in a signal tracking loop of a GPS receiver can be affected by the noise power, and the slope of the discriminator function is actually lowered as the noise power increases. In this paper, an algorithm to compensate the lowered slope of the function using the estimated C/N0 is studied, and a new design method of a code tracking which provides more accurate tracking error than a conventional one by adopting the compensation algorithm is proposed. Through the experimental results, finally, it has been check that the accuracy of the proposed DLL is enhanced about 50% when the dynamics of the vehicle is 20g/s.

Validation of DEM Derived from ERS Tandem Images Using GPS Techniques

  • Lee, In-Su;Chang, Hsing-Chung;Ge, Linlin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.1 s.31
    • /
    • pp.63-69
    • /
    • 2005
  • Interferometric Synthetic Aperture Radar(InSAR) is a rapidly evolving technique. Spectacular results obtained in various fields such as the monitoring of earthquakes, volcanoes, land subsidence and glacier dynamics, as well as in the construction of Digital Elevation Models(DEMs) of the Earth's surface and the classification of different land types have demonstrated its strength. As InSAR is a remote sensing technique, it has various sources of errors due to the satellite positions and attitude, atmosphere, and others. Therefore, it is important to validate its accuracy, especially for the DEM derived from Satellite SAR images. In this study, Real Time Kinematic(RTK) GPS and Kinematic GPS positioning were chosen as tools for the validation of InSAR derived DEM. The results showed that Kinematic GPS positioning had greater coverage of test area in terms of the number of measurements than RTK GPS. But tracking the satellites near and/or under trees md transmitting data between reference and rover receivers are still pending tasks in GPS techniques.

  • PDF

Exterior Orientation Parameters Determination of Aerial Photogrammetry by GPS Code Phases Measurement (GPS 코드파 관측에 의한 항공삼각측량의 외부표정요소의 결정)

  • 박운용;이동락;신상철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.2
    • /
    • pp.157-164
    • /
    • 1997
  • This study deals with GPS-photogrammetry practicability by C/A-code reception. It allows data to be acquired and analyzed fast. Combined block adjustment method was applied at the topographical map production of coast-land. And we compared it that of conventional block adjustment. As a result, it was found that accuracy was very sensitive to the arrangement and number of control points. The accuracy in the horizontal and vertical was $\pm{2cm}$ if all of the control points was available. however accuracy was not affected at additional parameters for systematic errors' elimination and it leads to bad results when the number of control points was few and arrangement of control points was not stabilized. GPS observations were added in block adjustment, but the accuracy of block was not upgraded due to the low accuracy of C/A-code reception. So relative positioning method with carrier phases was required for high accuracy and it is expected that CPS photogrammetry with C/A-code will be used widely according to the improvement of observation methods and the development of receiver.

  • PDF

Implementation of Visible Light Communication Transceiver of Mobile Devices for Location-Based Services (위치기반서비스 제공을 위한 휴대기기용 가시광통신 송수신기 구현)

  • Park, Sangil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.889-891
    • /
    • 2017
  • Visible light communication technology, which is a communication using LED lighting, is defined by IEEE 802.15.7 WG and active research is under way. Visible light communication is advantageous not only to avoid interference with existing RF communication but also to provide location based service through accurate positioning by utilizing LOS (Line of Sight) characteristic. Therefore, it is very easy and efficient to locate and track the user's location. In this paper, we implemented a visible light communication transceiver using USB interface for easy application to portable devices. It supports the mobility of mobile devices through internet protocol and showed BER performance of less than $10^{-3}dBm$ at over 1m, which is the height of lighting and smart device during walking.

Comparison of Areal Accuracy in Cadastral Uncoincidence using the RTK-GPS (RTK-GPS를 이용한 지적불부합지의 면적 정확도 비교)

  • Jang, Sang-Kyu;Kim, Jin-Soo;Lee, Oong-Lak
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.3 s.21
    • /
    • pp.107-114
    • /
    • 2002
  • The cadastral surveying is essential for the effective management of a country, the D/B building of NGIS. Many of GPS applications require a positioning accuracy of several centimeters for rover in real-times. But, to achieve higher positioning accuracies in real-time, the double differencing technique should be implemented using carrier phase data. Corrected observations at the reference station can be transmitted and used to form double difference observations at the rover using a data link. In this study, the area accuracy of cadastral survey using the RTK GPS will be assessed, and will produce area of parcel of land. As the result of comparison among area by TS, planer surveying and RTK GPS. parcels-register for site is analyzed by this data. The results show that mean error of area calculated min. $2.42m^{2}{\sim}\;max.\;13.69m^{2}$ and RMSE calculated min. $0.00329\;{\sim}\;max.\;0.01846$.

  • PDF

Performance Analysis of Compensation Algorithm for Localization Using the Equivalent Distance Rate and the Kalman Filter (균등거리비율 및 칼만필터를 이용한 위치인식 보정 알고리즘의 성능분석)

  • Kwon, Seong-Ki;Lee, Dong-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5B
    • /
    • pp.370-376
    • /
    • 2012
  • The CSS(Chirp Spread Spectrum) technology is used for developing various WPAN(Wireless Personal Area Network) application fields in general, and it can be adapted to implement localization systems especially using SDS-TWR(Symmetric Double Sided - Two Way Ranging). But the ranging errors are occurred in many practical applications due to some interferences by some experiments. Thus, the compensation algorithm for localization is required for developing localization applications. The suggested compensation algorithm that is named KF_EDR(Kalman Filter and Equivalent Distance Rate) for localization in order to reduce the ranging errors is suggested in this paper. The KF_EDR compensation algorithm for localization is mainly composed of the AEDR(Algorithm of Equivalent Distance Rate) and the Kalman Filter. It is confirmed that the improved error ratio of the KF_EDR are 10.5% and 4.2% compared with the AEDR algorithm in lobby and stadium. From the results, it is analyzed that the KF_EDR can be widely used for some localization system in ubiquitous society.

An improvement algorithm for localization using adjacent node and distance variation analysis techniques in a ship (근접노드와 거리변화량분석기법을 이용한 선내 위치인식 개선 알고리즘)

  • Seong, Ju-Hyeon;Lim, Tae-Woo;Kim, Jong-Su;Park, Sang-Gug;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.213-219
    • /
    • 2013
  • Recently, with the rapid advancement in information and communication technology, indoor location-based services(LBSs) that require precise position tracking have been actively studied with outdoor-LBS using GPS. However, in case of a ship which consists of steel structure, it is difficult to measure a precise localization due to significant ranging error by the diffraction and refraction of radio waves. In order to reduce location measurement errors that occur in these indoor environments, this paper presents distance compensation algorithms that are suitable for a narrow passage such as ship corridors without any additional sensors by using UWB(Ultra-wide-band), which is robust to multi-path and has an error in the range of a few centimeters in free space. These improvement methods are that Pythagorean theory and adjacent node technique are used to solve the distance error due to the node deployment and distance variation analysis technique is applied to reduce the ranging errors which are significantly fluctuated in the corner section. The experimental results show that the number of nodes and the distance error are reduced to 66% and 57.41%, respectively, compared with conventional CSS(Chirp spread spectrum) method.

Performance Improvement Algorithm for Wireless Localization Based on RSSI at Indoor Environment (RSSI의 거리 추정 방식에 바탕을 둔 실내 무선 측위 성능 향상 알고리즘)

  • Park, Joo-Hyun;Lee, Jung-Kyu;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4C
    • /
    • pp.254-264
    • /
    • 2011
  • In this paper, we propose two algorithm for improving the performance of wireless localization(Trilateration and Least Square) based on the range based approach method in indoor environment using RSSI for ranging distance. we propose a method to discriminate the case that has relatively large estimation errors in trilateration using Heron''s formula for the volume of a tetrahedron. And we propose the algorithm to process the discriminated types of distance using the absolute value calculated by Heron''s formula. In addition, we propose another algorithm for the case of which the number of anchor nodes larger than three. In this case, Residual Weighting Factor(RWGH) improves the performance of Least Square. However, RWGH requires many number of calculations. In this paper, we propose Iterative Weighted Centroid Algorithm(IWCA) that has better performance and less calculation than RWGH. We show the improvement of performance for two algorithms and the combination of these algorithm by using simulation results.

A Performance Improvement on Navigation Applying Measurement Estimation in Urban Weak Signal Environment (도심에서의 측정치 추정을 적용한 항법성능 향상 연구)

  • Park, Sul Gee;Cho, Deuk Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2745-2752
    • /
    • 2014
  • In recent years, Transport Demand Management has been conducted for the efficient management of transport. In ITS applications in particular, the prerequisite is accurate and reliable positioning. However, the major problems are satellite signal outage, and multipath. This paper proposes that outage and multipath measurement can be detected and estimated using elevation angle and signal to noise ratio data association relation in stand-alone GPS. In order to verify the performance of the proposed method, it is then evaluated by the car test. the evaluation test environment has low accuracy and unreliable positioning because of signal outage or multipath such as steep hill and high buildings. In the evaluation test result, 918times abnormal signal occurred and it was confirmed that the proposed method showed more improved 9.48m(RMS) horizontal positioning error than without proposed method.