• Title/Summary/Keyword: 충돌각 제어 유도

Search Result 23, Processing Time 0.025 seconds

Optimal Terminal Guidance Law for BTT Missiles Considering Impact-Angle Constraint of Stationary Target (정지 표적의 표적 충돌각을 고려한 BTT 미사일의 최적 종말 유도 법칙 설계)

  • Yeom, Joon-Hyung;Park, Sung-Min;Ha, In-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1737_1738
    • /
    • 2009
  • 미사일의 표적 충돌각을 원하는 각도로 제어하는 것은 표적의 취약점을 공략하기 위해 필수적인 기술이다. 표적 타격 지점 및 충돌각을 고려하지 않으면 타격에 성공하였다고 하더라도 표적의 방어 능력이 좋거나 신관이 충돌각에 민감하면 표적의 효과적인 파괴에 실패할 수도 있다. 이런 경우 유도 미사일의 종말 유도 효율을 증가시키기 위해 미사일이 표적을 타격하는 각도인 표적 충돌각(Impact Angle)을 제어할 수 있으면 적정 비행경로의 설정에 유리하고 우회공격 등이 가능할 뿐 아니라 미사일 탄두의 효과를 극대화할 수 있다. 하지만 이러한 장점을 갖는 표적 충돌각 유도 기법에 대한 연구는 아직 활발하게 행해지고 있지는 못하다. 기존 연구 결과들은 2차원 평면상에서의 충돌각 제어만을 다루고 있어, 요와 피치 채널의 커플링 문제가 있는 BTT 미사일에 적용하기가 어렵다는 문제점을 갖고 있다. 또한 미사일 동역학을 무시하거나 단순화하여 문제를 풀고 있기 때문에 실제 상황에 적용이 어렵다는 단점이 있다. 본 논문에서는 3차원 공간상에서의 롤 명령을 모두 포함하면서 동시에 미사일 자동조종제어기, 핀 구동기 동역학을 모두 고려한 새로운 BTT 미사일의 표적 충돌각 유도 기법을 제안한다.

  • PDF

Guidance Law to Control Impact-Time-And-Angle Using Time-Varying Gains (시변 이득을 이용한 비행시간 및 충돌각 제어 유도법칙)

  • Lee, Jin-Ik;Jeon, In-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.633-639
    • /
    • 2007
  • This paper presents a new homing guidance law based on well-known BPN to achieve an impact time constraint as well as an impact angle constraint. The guidance commands are synthesized by introducing an additional command to control impact-time. The structure of the additional command has a BPN-based loop multiplied by time-varying gains being proportional to the time difference between the required time-to-go and the estimated time-to-go by BPN. Moreover, the proposed homing loop converges to BPN as the time-to-go error is reduced. The performance of the proposed guidance law is evaluated by the computer simulations.

Impact Angle Control for Non-maneuvering Target with Look Angle Measurements and Line of Sight (지향각, 시선각 정보를 이용한 이동표적의 충돌각 제어)

  • Park, Jang-Seong;Lee, Dong-Hee;Park, Sang-Hyuk;Kim, Yoon-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.508-516
    • /
    • 2019
  • In this paper, we propose a guidance law to control Impact Angle in consideration of look angle limit of the missile with strapdown seeker on the non-maneuvering target. The proposed law is based on sliding mode algorithm and generates acceleration commands using look angle and line of sight information provided by the strapdown seeker and navigation system. And, target velocity and target path angle are provided by like TADS (Target Acquisition and Designation System) at launch time. We can confirm that the target interception and impact angle control are possible through the convergence of the proposed sliding surface. In addition, it is possible to confirm that the sign of derivative result of the look angle at the maximum and minimum look angle is opposite to the sign of the look angle, so the look angle limit is not exceeded.

Composite Guidance Law for Impact Angle Control Against Moving Targets Under Physical Constraints (이동표적 타격을 위하여 물리적 구속조건을 고려한 충돌각 제어 복합 유도법칙)

  • Park, Bong-Gyun;Kim, Tae-Hun;Kim, Youn-Hwan;Kwon, Hyuck-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.497-506
    • /
    • 2015
  • A composite guidance law for impact angle control against nonstationary nonmaneuvering targets is proposed. The proposed law is based on the characteristics of proportional navigation and generates two kinds of guidance commands during the homing phase. The first command is to keep the desired look angle, and the second is to attack the target with impact angle constraint. The switch of guidance phases occurs when the specific light-of-sight(LOS) angle determined from the engagement information is satisfied. The calculation method of the maximum achievable impact angle is also proposed to design easily the desired impact angle within the missile capability. Numerical simulations are performed to investigate the performance and characteristics of the proposed law.

Suboptimal Homing Guidance Law by Synthesis of the Aided Loop for Impact Angle Constraint (충돌각 구속조건을 위한 보조루프 합성을 통한 준최적 호밍 유도법칙)

  • Lee, Jin-Ik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.1006-1012
    • /
    • 2007
  • In this paper, a suboptimal homing guidance law for the homing missiles with an impact angle constraint is presented. Unlike general LQ optimal control, the aided loop ensuring some degrees of freedom for the constraint is introduced. Then an optimal feedback loop in consideration of the aided loop is designed by using Schwartz inequality. The aided loop is synthesized with the optimal control to produce the guidance command. Furthermore, to investigate the characteristics of the guidance law we carry out the comparative studies with other guidance laws. The results of the various computer simulations show the good performance of the proposed law.

Inverse Optimal Problem for Homing Guidance with Angular Constraint (충돌각 제어 호밍유도법칙의 역최적 문제)

  • Lee, Jin-Ik;Lee, Yong-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.412-418
    • /
    • 2007
  • An inverse optimal problem for homing guidance with angular constraint is addressed. The gains of BPN(Biased PN) are investigated by duality analysis related to the weighting matrices of the performance index in the LQ control problem. Moreover, the criteria for the existence of optimal gains are derived from the generalized Riccati equation. Based on the conditions we achieve the gain set of BPN to be optimal solution to the LQ problem with terminal constraints. To validate and demonstrate the proposed approach 3-DOF simulations are carried out.

Homing Guidance Law of Anti-Ship Missiles Using Flight Path Angle (비행 경로각을 이용한 대함 유도탄의 호밍 유도법칙)

  • Jin, Sheng-Hao;Yang, Bin;Hwang, Chung-Won;Park, Seung-Yub;Park, Seung-Je
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.596-603
    • /
    • 2010
  • This paper presents a homing guidance law of anti-ship missiles using flight path angle to achieve an impact time constraint as well as an impact angle constraint. the independent variable in the nonlinear engagement model is change d from the flight time to the heading angle of the missile. The proposed guidance law can home a missile to the target with zero miss distance as well as satisfying both of the impact angle and time constraints. The performance of the proposed guidance law is evaluated by the computer simulations.

Composite Guidance Law for Impact Angle Control of Passive Homing Missiles (수동 호밍 유도탄의 충돌각 제어를 위한 복합 유도법칙)

  • Park, Bong-Gyun;Kim, Tae-Hun;Tahk, Min-Jea;Kim, Youn-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.20-28
    • /
    • 2014
  • In this paper, based on the characteristics of proportional navigation, a composite guidance law is proposed for impact angle control of passive homing missiles maintaining the lock-on condition of the seeker. The proposed law is composed of two guidance commands: the first command is to keep the look angle constant after converging to the specific look angle of the seeker, and the second is to impact the target with terminal angle constraint and is implemented after satisfying the specific line of sight(LOS) angle. Because the proposed law considers the seeker's filed-of-view(FOV) and acceleration limits simultaneously and requires neither time-to-go estimation nor relative range information, it can be easily applied to passive homing missiles. The performance and characteristics of the proposed law are investigated through nonlinear simulations with various engagement conditions.

Time-to-go Polynomial Guidance Law for Target Observability Enhancement (표적 가관측성 향상을 위한 Time-to-go 다항식 유도법칙)

  • Kim, Tae-Hun;Lee, Chang-Hun;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • In this paper, we propose a new guidance law for target observability enhancement, which can control both terminal impact angle and acceleration. The proposed guidance law is simple form, combined conventional time-to-go polynomial guidance and a additional bias term which consists of relative position and proportional gain. The guidance law provides oscillatory flight trajectory and it maintains the conventional time-to-go polynomial guidance performance. To investigate the characteristics of the guidance law, we derive the closed-form solution, and various simulations are performed for proving the validity of the proposed guidance.

Guidance Law of Missiles for Control Impact-Time-and-Angle by Flight Path Angle in Three Dimensional Space (3차원 공간에서의 비행 경로각을 이용한 비행시간 및 충돌각 제어 유도법칙)

  • Jin, Sheng-Hao;Lee, Chun-Gi;Yang, Bin;Hwan, Chung-Won;Park, Seung-Yub
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • This paper on the assumption that the target is stationary and the velocity of missile is fixed value. In three dimensional space. Using flight path angle to simultaneous control impact-time-and-angle base on a homing guidance law. The independent variable in the nonlinear engagement model is the flight path angle of the missile. The propose homing guidance law can see the controllability of impact-time-and-angle. And also can see the processing of the missile arrive at the target. It is applied to several salvo attack scenarios. The performance of the proposed guidance law is verified by simulations.