• Title/Summary/Keyword: 충격파 속도

Search Result 171, Processing Time 0.029 seconds

Studies on Through-Bulkhead Initiation Module using VISAR (VISAR을 이용한 격벽 착화 모듈 특성 연구)

  • Jang, Seung-Gyo;Baek, Sung-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.16-24
    • /
    • 2010
  • A Through-Bulkhead Initiation Module(TBIM) works as the shock-wave generated by the detonation of donor explosive transmits to acceptor explosive. In order to estimate the minimum thickness of the bulkhead of TBIM, the structural stress of TBIM housing is calculated via modeling analysis, and which shows a sufficient margin in strength as the minimum thickness is bigger than 0.1 mm. The free surface velocity at the metal to explosive interface is measured using VISAR to determine the optimal thickness of bulkhead. The shock pressure is calculated from the measured free surface velocity, and the probability of TBIM with respect to the thickness of bulkhead is estimated by comparing the sensitivity of acceptor explosive with it.

An Assessment of the Prestress Force on the Bonded Tendon Using the Strain and the Stress Wave Velocity (변형률과 응력파속도를 이용한 부착식 텐던의 긴장력 평가)

  • Jang, Jung Bum;Hwang, Kyeong Min;Lee, Hong Pyo;Kim, Byeong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.183-188
    • /
    • 2012
  • The bonded tendon was adopted to the reactor containment building of some operating nuclear power plants in Korea and the assessment of the prestress force on the bonded tendon is very important for the evaluation of the structural integrity. The prestress force of the bonded tendon at real reactor containment building, was evaluated using the SI technique and impact signal analysis technique which were developed to improve the existing indirect assessmment technique. For these techniques, the strain of the reactor containment building and the stress wave velocity of the bonded tendon were measured. Both SI technique and impact signal analysis technique give the highly reliable results comparison with the existing theoretical approach. Therefore, it is confirmed that the developed techniques are very useful for the evaluation of the prestress force on the bonded tendon.

New Drug Delivery System Based on a Laser-Induced Shockwave (레이저 유도 충격파를 이용한 첨단 약물전달시스템 개발)

  • Han, Tae-Hee;Lee, Hyun-Hee;Gojani, Ardian B.;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.67-71
    • /
    • 2010
  • Impingement of a high power laser pulse (above 1 GW/$cm^2$) on a metal foil causes its ablation, which is characterized by a rapid expulsion of matter and the initiation of a strong shock wave inside the solid metal. The shock propagates through the foil and reverberates on the rear side, causing its deformation and microparticle ejection, which were deposited on the foil prior to ablation. Based on this principle, we are developing a new drug delivery system - Biolistic gun. Current study is focused on the controllability, stability, efficiency of the system, and characterization of the penetration shapes in various conditions. We have tested the system by applying direct and confined ablation. Several different media combinations were used for confinement-BK7 glass, water, BK7 glass with water, and succulent jelly(ultrasono jelly, RHAPAPHRM). Biological tissue was replicated by a 3% gelatin solution. Present data shows that the confinement results in enhancement of penetration shape reached by 5 um cobalt microparticles. Based on the analysis of the experimental results we observe that the penetration shape of microparticles can be controlled by adjusting the thickness of confinement media.

A Study on the Ramjet Engine Combustor (렘제트 엔진 연소기에 대한 연구)

  • 정재진;심재헌;김성돈;최정열;윤영빈;정인석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.14-14
    • /
    • 1998
  • 램제트 엔진은 초음속에서 공기가 충격파를 통해 아음속으로 속도가 낮아지고 압력이 증가하는 램 압축 현상을 이용하되 압축기를 사용하지 않고 아음속 상태에서 연소하는 구조로 되어 있다. 따라서 각 부품의 성능은 독립적이지 않으며 전체적인 성능을 규명하기 위해서는 공기 흡입구와 연소실, 연료 분사체계 등의 상호작용을 고려하여 유동의 특성과 그에 따른 연소현상의 특성을 함께 고려해야만 한다. 본 연구에서는 속도 범위 Mach 5이내, 고도 30km이내의 운항조건을 갖는 유도 무기에 장착될 램제트 엔진 개발을 위한 연구의 첫 번째 단계로써, 램제트 연소실내의 유동장해석을 실험과 수치해석 두 분야로 나누어 수행하였다.

  • PDF

Highway Ramp Metering Technique for Solving Non-Recurrent Congestion according to Incident (돌발상황에 따른 비 반복정체를 해소하기 위한 고속도로 램프미터링 기법)

  • Kang, Won-Mo;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.186-191
    • /
    • 2011
  • Ramp metering has been used to solve recurrent or non-recurrent congestion on many highways. However, the existing ramp metering methods cannot control non-recurrent congestion like incident and don't have any methods to solve congestion after congestion. In addition, the methods cannot solve congestion quickly because ramp metering operates independently for each ramp. In this study, we developed SARAM which is ramp metering technique with shockwave theory in order to solve the problems. In simulation from Jangsoo IC to Joongdong IC, we confirmed that speed increased by 7.32km/h and delay time reduced by 39.14sec.

Underwater Explosion Experiments using Pentolite (펜톨라이트를 이용한 수중폭발 실험)

  • Choi, Gulgi;Jung, Keunwan;Jung, Son Soo;Kim, Jong-Chul;Lee, Phill-Seung
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.21-30
    • /
    • 2017
  • When explosives explode in water, the effect of post-explosion gas after explosion should be considered, unlike explosion in the air. During explosion in water, the propagation velocity of the explosion pressure is faster than when the explosion occurs in the air. The generated gas is diffused and trapped in the form of bubbles by water before the energy is dissipated. At this time, the bubble expands and contracts, creating a shock wave. In order to investigate this series of phenomena, a cylinder type steel water tank capable of observing the interior was fabricated and explosion experiments were conducted. In this study, a small amount of shell-free pentolite was exploded in water. Experiments were performed to observe the behavior of the generated gas bubble as well as to measure the shock wave generated. We designed the experimental method of underwater explosion and examined the results.

Assessment of Rockmass Damage around a Tunnel Using P Wave Velocity Tomography (P파 속도 토모그래피를 이용한 터널 주변의 암반손상 평가)

  • Park, Chul-Soo;SaGong, Myung;Mok, Young-Jin;Kim, Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.53-60
    • /
    • 2009
  • Construction of a tunnel induces rock masses damage around the tunnel. The degree of damage produced on rock masses will affect on the mechanical and hydraulic behaviors of the rock masses. In this paper, P wave velocity measured by cross-hole test was used to assess rock masses damage around the test tunnel. Initiation of source signal was carried out using mechanical impact at the source installed borehole. In consequence, the generated P wave signal was low noise and apparent wave form, which allows accurate pick-up of first arrival time. From the test, the region where rock damage is expected shows relatively low P wave velocity. In addition, with multiple points of P wave velocity measurement along each cross-hole, two dimensional P wave tomography was obtained. The tomography provides apparent view of the rock damage behind the tunnel. The measured P wave velocity was correlated with features of rock masses, porosity and Q value.

Aerodynamic Characteristics of a Tube Train (튜브 트레인 공력특성 해석)

  • Kim, Tae-Kyung;Kim, Kyu-Hong;Kwon, Hyeok-Bin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.139-150
    • /
    • 2010
  • Recently, full-scale research about a passenger tube train system is being progressed as a next-generation transportation system in Korea in light of global green technology. The Korea Railroad Research Institute (KRRI) has commenced official research on the construction of a tube train system. In this paper, we studied various parameters of the tube train system such as the internal tube pressure, blockage ratio, and operating speed through computational analysis with a symmetric and elongated vehicle. This study was about the aerodynamic characteristics of a tube train that operated under standard atmospheric pressure (open field system, viz., ground) and in various internal tube environments (varying internal tube pressure, blockage ratio, and operating speed) with the same shape and operating speed. Under these conditions, the internal tube pressure was calculated when the energy efficiency had the same value as that of the open field train depending on various combinations of the operating speed and blockage ratio (the P-D relation). In addition, the dependence of the relation between the internal tube pressure and the blockage ratio (the P-${\beta}$ relation) was shown. Besides, the dependence of the relation between the total drag and the operating speed depending on various combinations of the blockage ratio and internal tube pressure (the D-V relation) was shown. Also, we compared the total (aerodynamic) drag of a train in the open field with the total drag of a train inside a tube. Then, we calculated the limit speed of the tube train, i.e., the maximum speed, for various internal tube pressures (the V-P relation) and the critical speed that leads to shock waves under various blockage ratios, which is related to the efficiency of the tube train (the critical V-${\beta}$ relation). Those results provide guidelines for the initial design and construction of a tube train system.

  • PDF

Quality Management Platform of Ocher Concrete Using Nondestructive Tests Based on the Stress Waves (응력파기반 비파괴검사법을 이용한 황토콘크리트 품질관리 플랫폼)

  • Hong, Seong-Uk;Kim, Seung-Hun;Kim, Seong-Yeob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.120-127
    • /
    • 2016
  • Several problems including respiratory and skin disorders due to the problems for sick house syndrome have occurred, there appears echo friendly materials to solve the problems. The research is lacking in quality management techniques ocher concrete using nondestructive tests. In this research, the experimental works were conducted to study the initial quality control for the compressive strength of Ocher concrete(21 MPa). The purpose of this study is the implementation platform for quality management of ocher concrete using nondestructive tests. It uses the relationship between the compressive strength and ultrasonic pulse velocity of the ocher concrete to estimate the compressive strength of the ocher concrete. And using the impact echo method to estimate the thickness of the ocher concrete. The platform is based on a Java script, so that the user can obtain the data through the platform.

Influence of a isolator in supersonic nozzle on thermal choking (초음속 노즐의 분리부가 열폐색에 미치는 영향)

  • Kim, Sangwoo;Kim, Youngcheol;Kim, Jangwoo
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.237-242
    • /
    • 2012
  • This study presents numerical solutions of the two-dimensional Navier-Stokes equations for supersonic unsteady flow in a convergent-divergent nozzle with a isolator. The TVD scheme in generalized coordinates is employed in order to calculate the moving shock waves caused by thermal choking. We discuss on transient characteristics, unstart phenomena, fluctuations of specific thrust caused by thermal choking and effects of isolator. The adverse pressure gradient caused by heat addition brings about separation of the wall boundary layers and formation of the oblique shock wave that proceed to upstream. The proceeding speed of the oblique shock wave to upstream direction for the convergent-divergent nozzle with isolator is lower than that for the nozzle without isolator.