Underwater Explosion Experiments using Pentolite

펜톨라이트를 이용한 수중폭발 실험

  • 최걸기 (한국과학기술원 기계공학과 해양기술연구센터) ;
  • 정근완 (한국항공우주산업(주)) ;
  • 손수정 ((주)한화 여수사업장) ;
  • 김종철 (국방과학연구소) ;
  • 이필승 (한국과학기술원 기계공학과)
  • Received : 2017.09.11
  • Accepted : 2017.09.20
  • Published : 2017.09.30

Abstract

When explosives explode in water, the effect of post-explosion gas after explosion should be considered, unlike explosion in the air. During explosion in water, the propagation velocity of the explosion pressure is faster than when the explosion occurs in the air. The generated gas is diffused and trapped in the form of bubbles by water before the energy is dissipated. At this time, the bubble expands and contracts, creating a shock wave. In order to investigate this series of phenomena, a cylinder type steel water tank capable of observing the interior was fabricated and explosion experiments were conducted. In this study, a small amount of shell-free pentolite was exploded in water. Experiments were performed to observe the behavior of the generated gas bubble as well as to measure the shock wave generated. We designed the experimental method of underwater explosion and examined the results.

폭약이 수중에서 폭발하면 공기 중에서 폭발하였을 때와는 다르게 폭발 이후 발생하는 가스의 영향에 대한 고려가 필요하다. 수중 폭발 시에는 폭발압력의 전파속도가 공기 중에서 폭발했을 때에 비하여 빠르고, 발생하는 가스 또한 확산되어 에너지를 소실하기 전 물에 의하여 버블의 형태로 갇히게 된다. 이 때 버블은 팽창과 수축을 반복하며 충격파를 만들어낸다. 이러한 일련의 현상을 연구하기 위하여 내부를 관측할 수 있는 실린더형 철재 수조를 제작하고 폭발 실험을 수행하였다. 본 연구에서는 탄체가 없는 소량의 펜톨라이트를 수중에서 폭발시켰고, 이 때 발생하는 충격파를 계측하고 발생된 가스버블의 거동을 관측하여 그 결과를 관찰하였다.

Keywords

References

  1. Chisum, J.E., (1996),"Simulation of the Dynamic Behavior of Explosion Gas Bubbles in a Compressible Fluid Medium", Ph.D. Thesis, Naval Postgradute School, Monterey, CA.
  2. Cole, R.H., (1948), Underwater explosions, Princeton University, New Jersey, 437 pages.
  3. Geers, T.L. and Hunter, K.S., (2004), "Pressure and Velocity Fields Produced by and Underwater Explosion", Journal of the Society of Naval Architects of Korea, Vol.42(5), pp493-498.
  4. Klaseboer, E., Hung, K.C., Wang, C., Wang, C.W., Khoo, B.C., Boyce P., Debono S., Charlier H., (2005) "Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure",Journal of Fluid Mechanics, Vol.537, pp.387-413. https://doi.org/10.1017/S0022112005005306
  5. Kwon, J,I., (2002), "Underwater Shock Response Analysis of Floating Structures Considering Effects of Cavitation", Korea Maritime University Master Thesis, 2002.
  6. Kweon, J.I., (2006) "A study on Application of Design of Experiment Methodology to Efficient UNDEX Ship Shock Simulation", Graduate school, Korean Maritime University, South Korea.
  7. Park, J.W., (2008), "A Coupled Runge Cutta Discontinuous Galerkin-Direct Ghost Fluid (RKDG-DGF) Method to Near-field Early-time Underwater Explosion (UNDEX) Simulation, Ph,D Thesis, Virginia polytechnic institute and state university, Blacksburg, Virginia, 175 pages.
  8. Shin, Y.S., (2011), "Naval Ship-Shock Design and Analysis", Course Notes for Underwater Shock Analysis, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
  9. Warren, W.D., (1996), "The Response of Surface Ships to Underwater Explosion", Aeronautical and Maritime Research Laboratory, DSTO, Melbourne, Austraila, 38 pages.
  10. Shin, YS., (2009), 수중 충격파에 의한 수상함과 수중함의 해석과 설계방안, 강의노트, KAIST
  11. PCB PIEZOTRONICS, Model 138A10 ICP Pressure Senor Installation and Operating Manual, 6pages.