• Title/Summary/Keyword: 충격응답함수

Search Result 70, Processing Time 0.025 seconds

Probabilistic Time Series Forecast of VLOC Model Using Bayesian Inference (베이지안 추론을 이용한 VLOC 모형선 구조응답의 확률론적 시계열 예측)

  • Son, Jaehyeon;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.305-311
    • /
    • 2020
  • This study presents a probabilistic time series forecast of ship structural response using Bayesian inference combined with Volterra linear model. The structural response of a ship exposed to irregular wave excitation was represented by a linear Volterra model and unknown uncertainties were taken care by probability distribution of time series. To achieve the goal, Volterra series of first order was expanded to a linear combination of Laguerre functions and the probability distribution of Laguerre coefficients is estimated using the prepared data by treating Laguerre coefficients as random variables. In order to check the validity of the proposed methodology, it was applied to a linear oscillator model containing damping uncertainties, and also applied to model test data obtained by segmented hull model of 400,000 DWT VLOC as a practical problem.

Acoustic Characteristics of the Haegeum Body (해금 몸체의 음향학적 특성에 관한 연구)

  • Noh, Jung-Uk;Park, Sang-Ha;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.317-322
    • /
    • 2007
  • This paper is the first step to study on the acoustic characteristics of the Haegeum, a Korean traditional bowed-string instrument. We measured acoustic transfer functions of a Haegeum body using impulse response method. All the measurements are performed in anechoic chamber, INMC, SNU. We examined resonant characteristics of the Haegeum body with obtained transfer functions. Then we performed additional studies which are the Chladni pattern experiments and calculations of air cavity resonances to verify relations between the resonant peaks on the transfer functions and the resonances of each component, such as top plate, air cavity and so on. As a result, we can explain the acoustic characteristics of a Haegeum body and its components.

3-D Vibration Modes of the Tire in Ground Contact and Its Effects on Axle When Excited by a 3-D Impact at the Center of Contact Patch (접지면 중앙에서 3차원 방향의 충격 가진에 의한 타이어의 3차원 진동형이 축에 미치는 영향)

  • 김용우;남진영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.171-182
    • /
    • 2003
  • Tire vibration modes are known to play a key role in vehicle ride and comfort characteristics. Inputs to the tire such as impacts, rough road surface, tire nonuniformities, and tread patterns can potentially excite tire vibration. In this study, experimental modal analysis on the tire in ground contact are performed by a 3-D impact at the center of contact patch to investigate which modes of tire influence the vibration of wheel and axle. Through the experiment, the vibration transmission properties from tire to axle are examined. And we have compared the influential tire modes when the tire is excited by a vertical impact with those when excited by the 3-D impact. Additionally, the modes of ground contact tire are compared with those of the suspended tire.

Identification of Rigid Body Properties of the Mounted Structure with Improved Mass-Lines from Impact Hammer Tests (탄성지지된 구조물의 충격 햄머 실험에서 질량선의 개선을 통한 향상된 강체 특성 규명법)

  • Ahn, Se-Jin;Jeong, Weui-Bong;Hwang, Dae-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.317-322
    • /
    • 2002
  • There are many researches to identify the rigid body properties from the mass-line obtained by impact hammer testing. The correct rigid body properties of the structure may be estimated if the mass-line of the structure could be obtained exactly. When the structure is mounted by elastic materials, the mass-line cannot be read correctly from the impulse response spectrum. The reason is due to the effects of rigid body modes of mounted structure. In this paper, the effects of rigid body modes of mounted structure to the mass-line are discussed and the method to remove these effects is also presented.

  • PDF

The Identification of Rigid Body Properties with Improved Mass-Lines from Impact Hammer Tests of The Mounted Structure (탄성지지된 구조물의 충격 햄머 실험에서 질량선의 개선을 통한 향상된 강체 특성 규명법)

  • Ahn, Se-Jin;Jeong, Weui-Bong;Hwang, Dae-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.336.2-336
    • /
    • 2002
  • There are many researches to identify the rigid body properties from the mass-line obtained by impact hammer testing. The correct rigid body properties of the structure may be estimated if the mass-line of the structure could be obtained exactly. When the structure is mounted by elastic materials, the mass-line cannot be read correctly from the impulse response spectrum. The reason is due to the effects of rigid body modes of mounted structure. (omitted)

  • PDF

A Case Study of the Higher Vibration on the Driving Motors of Port Crane (항만용 크레인 구동 모터 고진동 사례 연구)

  • Kim, Yeong-Chun;Park, Heui-Joo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.416-421
    • /
    • 2001
  • It was firstly issued that frequently broken of Encoder installed at travelling motor during RTGC operation. Estimated as broken due to excessive vibration of traveling and motor manufacturer claimed it as resonance of motor base. The principal vibration of Encoder was caused by the rotating vibration component of motor and by traveling wheel. The component transmitted from the wheel didn't have great vibration by the resonance with motor and other parts. Therefore, the plans was tried to add the support point to prevent the Encoder shaft vibrated greatly and inhibit the vibration. These showed good results.

  • PDF

Evaluation of Drop/Impact Performance of Laptop Computer (컴퓨터의 충격해석 및 실험적 검증)

  • Youn, Youg-Han;Rim, Kyung-Hwa;Kim, Jin-Kyoo;An, Chae-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.737-741
    • /
    • 2000
  • Portable communication devices such as laptop computers suffer impact-induced failure in their usage. Drop/impact performance of these products is one of important concerns of product design. Because of the small size of this kind of electronics products, it is very expensive, time-consuming and difficult to conduct drop tests to directly detect the failure mechanism and identify their drop behaviors. Finite element analysis provides a vital, powerful vehicle to solve the problems. The models are created with HYPERMESH, and the analysis is carried out with LS-DYNA3D. The analysis is focused on HDD impact behavior in acceleration peak values.

  • PDF

Damage Evaluation of Cracked Laminated Composite Plates Using Experimental Modal Analysis (실험 모드해석을 이용한 균열 적층복합판의 손상평가)

  • Kim, Joo-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.399-410
    • /
    • 2012
  • In this study, vibration tests are performed on cantilevered and clamped-clamped laminated composite rectangular plates using experimental modal analysis technique. The damages are simulated by applying progressive line cracks to the laminated composite plates for damage evaluations due to crack growth. The changes of frequency response functions(FRFs), MAC values, and modal parameters (frequency, mode shape and damping ratio) of the damaged composite plates, which are obtained by the modal testing of impact hammer, are investigated. Each experimental modal parameter of the progressively damaged composite plates is compared with natural frequencies and mode shapes obtained by finite element analysis. It is seen that the damage can be evaluated from the changes in the geometric properties and structural behaviors of the laminated composite plates resulting from the model updating process of the finite element model as a benchmark.

Comparison of Fragility Using Natural Frequency and Damping Parameter in System (고유주파수와 감쇠비에 대한 시스템 손상도 비교)

  • Lee, Seok-Min;Jung, Beom-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.48-55
    • /
    • 2018
  • The purpose of the present study is to compare the reduction rate of natural frequency and the increase rate of damping parameter with structural damage in system. For this purpose, experiment and numerical simulation analysis are performed for the 2-span H-Beam with lower natural frequency and higher damping parameter from free vibration in structure. The response signal by impact load before and after damage is analyzed at 14 locations. The response signals for all locations are performed fast fourier transform to estimate the natural frequency reduction rate and wavelet transform to estimate the damping parameter increase rate. The time domain function corresponding to each scale(frequency) is separated from the response signal by wavelet parameter. The estimation of damping parameter increase rate using wavelet transform is more sensitive than the estimation of natural frequency reduction rate in structure.

A Time Domain Analysis for Hydroelastic Behavior of a Mat-type Large Floating Structure in Calm Water under Dynamic Loadings by Mode Superposition Method (모드중첩법을 이용한 정수중의 매트형 거대부유구조물의 동하중에 대한 시간영역 유탄성 해석)

  • D.H. Lee;K.N. Jo;Y.R. Choi;S.Y. Hong;H.S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.39-47
    • /
    • 2001
  • In this paper, the hydroelastic behavior of a mat-type large floating structure is analyzed in time domain by using mode superposition method. The time-memory function is estimated by Fourier transforming the wave damping coefficients, which are computed by a higher-order boundary element method based on potential theory. Meanwhile, the structural response is obtained by time integrating the eigenmodes of the structure. Numerical examples are made for three test cases on the scaled model of a mat-type large floating structure ; weight pull-up case, weight drop case and weight moving case. In all three cases, the numerical results coincide well with experimental data.

  • PDF