Lee, Ho Joon;Choi, Tae-Jin;Oh, Young Kee;Jeun, Kyung Soo;Lee, Yong Hee;Kim, Jin Hee;Kim, Ok Bae;Oh, Se An;Kim, Sung Kyu;Ye, Ji Woon
Progress in Medical Physics
/
v.25
no.1
/
pp.15-22
/
2014
The IMRT is proper implement to get high dose deliver to tumor as its shape and selective approach in radiation therapy. Since the IMRT is performed as modulated the radiation fluence by the MLC created the open shapes and its irradiation time, the dose of segment of radiation field effects on the cumulated portal dose. The accurate output factor of small and step shape of segment is important to improve the determination of deliver tumor dose as it is directly proportional to dose. This experiment performed with the 6 MV photon beam of Clinac Ex(Varian) from $3{\times}3cm^2$ to $0.5{\times}0.5cm^2$ small field size for collimator jaw in MLC free and/or for MLC open field in fixed collimator jaw $10{\times}10cm^2$ using the CC01 ion chamber, SFD diode, diamond detector and X-Omat film dosimetry. As results of normalized to the reference field of $10{\times}10cm^2$ of MLC, the output factor of $3{\times}3cm^2$ showed $0.899{\pm}0.0106$, $0.855{\pm}0.0106$ for $2{\times}2cm^2$, $0.764{\pm}0.0082$ for $1{\times}1cm^2$ and $0.602{\pm}0.0399$ for $0.5{\times}0.5cm^2$. The output factor of MLC open field has shown a maximum 3.8% higher than that of the collimator jaw open field.
In dose modeling, the shape of actual source and sealed capsule are important parameter to determine the physical dose computation. The author investigated the effect of filter of source self-absorption and sealed capsule to designed the high dose rate Ir-192 source for Ralstron(Japan) unit. The size of source designed to 1.5 mm $\Phi$ x 1.5mm length of actual source sealed with stainless steel which is 3.0mm $\Phi$ x 12.0mm length connected to driving cable. The dose attenuation was derived 66.3 % from 2655 segmented source at reference point of 10mm lateral distance of source. The output dose rate factor in tissue for designed source showed 0.0013511 cGy/mCi-sec in reference point at 1cm lateral distance of source center. The dose distribution at inferior of source showed the 52% of that of source tip region, however, the filtering effect was small as 4% at 45degrees of source axis. The dose attenuation within 20 degrees of source axis at near source-cable connector showed large filtering effect as 40% over, but the small effect was revealed isotropic dose distribution at large angle.
Recently, They are usually recording the patient information on the Hospital Information System. In the department of Radiology, For the purpose of assuming patient exposed dose, Authors contrived the mathematical calculation model by use of x-ray out put data on the Excel program, if they in put the exposure factors (kVp, mAs, thickness), the program could automatically calculate the patient Skin dose. The assuming data by three dimensional equation has average errors within ${\pm}5%$, there for We could make good use of clinical field in department of radiology.
The Journal of Korean Society for Radiation Therapy
/
v.23
no.1
/
pp.51-58
/
2011
Purpose: In this study, we tried to check the usefulness of two Linear Accelerators, Clinac IX and 21EX (Varian, Palo Alto, CA), which are equipped in Ajou Medical Center. From 2008 to 2010, we evaluated the error range of Absolute Dose based on the daily output, which was measured by CHECKMATE$^{TM}$ (Sun Nuclear, Melbourne, FL). Materials and Methods: For Daily Q.A, photon beams of two linear accelerators, 21EX and IX (6 MV and 10 MV, respectively) were measured daily by using CHECKMATE$^{TM}$ just before the treatment began, while the absolute dose was measured biweekly by using water phantom. We analyzed the data of measured values from the daily Q.A and the absolute dose from 2008 to 2010 for 21EX, and from 2009 to 2010 for IX. We utilized Excel 2007 (Microsoft, USA) to evaluate Average, Standard deviation and Confidence level of the data. Furthermore, in order to check the measured values of CHECKMATE$^{TM}$ and the significance of absolute dose, each error value was compared and analyzed. Results: During the observation period, the output of two equipment's absolute dose increased in process of time and in both 6 MV and 10 MV, there was a similar increasing trend. In addition, the error rate of the measured value of CHECKMATE$^{TM}$ and the value of absolute dose were under 0.34, which means that there is a similarity relationship between the two measured values. After checking that the measured value of CHECKMATE$^{TM}$ increased, We measured the absolute dose to adjust that. When the error range was close to 2~3%, the number of changing the output was four for 21EX and three for IX. Conclusion: As a result of measuring and analyzing the daily output changes for two years by using CHECKMATE$^{TM}$, we could find that there is a significance between the output which we should obey during Q.A, and the measured value of absolute dose within the error tolerance of 2~3%. Thus, the use of CHECKMATE$^{TM}$ can be positively considered for more efficient and reliable daily output verification of linear accelerator. It can also be a good standard for other medical centers to understand the trends of linear accelerator and to refer to for the correction of each output.
Lee, Wi Yong;Kim, Hyun Jin;Yun, Na Ri;Hong, Hyo Ji;Kim, Hong Il;Baek, Seung Wan
The Journal of Korean Society for Radiation Therapy
/
v.31
no.1
/
pp.17-24
/
2019
Purpose: The present study aims to assess the level of coherency and the accuracy of Point dose of the Isocenter of VERO, a linear accelerator developed for the purpose of the Stereotactic Body Radiation Therapy(SBRT). Materials and Method: The study was conducted randomly with 10 treatment plans among SBRT patients in Kyungpook National University Chilgok Hospital, using VERO, a linear accelerator between June and December, 2018. In order to assess the equipment's power stability level, we measured the output constancy by using PTW-LinaCheck, an output detector. We also attempted to measure the level of accuracy of the equipment's Laser, kV(Kilo Voltage) imaging System, and MV(Mega Voltage) Beam by using Tofu Phantom(BrainLab, Germany) to assess the accuracy level of geometrical Isocenter. We conducted a comparative analysis to assess the accuracy level of the dose by using an acrylic Phantom($30{\times}30{\times}20cm$), a calibrated ion chamber CC-01(IBA Dosimetry), and an Electrometer(IBA, Dosimetry). Results: The output uniformity of VERO was calculated to be 0.66 %. As for geometrical Isocenter accuracy, we analyzed the error values of ball Isocenter of inner Phantom, and the results showed a maximum of 0.4 mm, a minimum of 0.0 mm, and an average of 0.28 mm on X-axis, and a maximum of -0.4 mm, a minimum of 0.0 mm, and an average of -0.24 mm on Y-axis. A comparison and evaluation of the treatment plan dose with the actual measured dose resulted in a maximum of 0.97 % and a minimum of 0.08 %. Conclusion: The equipment's average output dose was calculated to be 0.66 %, meeting the ${\pm}3%$ tolerance, which was considered as a much uniform fashion. As for the accuracy assessment of the geometric Isocenter, the results met the recommended criteria of ${\pm}1mm$ tolerance, affirming a high level of reproducibility of the patient's posture. The difference between the treatment plan dose and the actual measurement dose was calculated to be 0.52 % on average, significantly less than the 3 % tolerance, confirming that it obtained predicted does. The current study suggested that VERO equipment is suitable for SBRT, and would result in notable therapeutic effect.
Recently linear accelerator of radiation therapy intensity modulated radiation therapy, stereotactic radiation therapy are widely used. Such radiation treatment techniques are generally difficult to exclude the small field by using the inverse treatment plan. It is necessary to dose an accurate measurement of characteristics of the small field. Thus, using different detectors to measure the volume of the effective percentage depth dose, beam profile, and the output factor of the small field was to evaluate the dose characteristics of each detector. Experimental results for the X-ray beam 6 MV energy beam quality($PDD_{20}/PDD_{10}$) is $10{\times}10cm^2$ Diode detector is as high as 2.4% compared to Pinpoint detector. All field size to lesser effective volume of Diode detector shows that it is far better than other detectors by more than 50% of small penumbra, therefore spatial resolution far excellent. In field size $2{\times}2cm^2$ Semiflex detector was measured about 2% less than the other detector. Field size $1{\times}1cm^2$ is that there is no judgment about the validity show the difference between 20%. Field size $1{\times}1cm^2$ from the measured values of the Diode detector and Pinpoint detector showed a 13% difference. Less than field size $3{\times}3cm^2$ the feed to the difference between the output factor of the effective volume of the detector to be used for the effective volume available to the detector.
Kim Siyong;Han Eunyoung;Palta Jatinder R.;Ha Sung W.
Radiation Oncology Journal
/
v.21
no.2
/
pp.158-166
/
2003
Purpose: To propose a conceptual design of a novel source for intensity modulated brachytherapy. Materials and Methods: The source design incorporates both radioactive and shielding materials (stainless steel or tungsten), to provide an asymmetric dose intensity in the azimuthal direction. The intensity modulated intravascular brachytherapy was performed by combining a series of dwell positions and times, distributed along the azimuthal coordinates. Two simple designs for the beta-emitting sources, with similar physical dimensions to a $^{90}Sr/Y$ Novoste Beat-Cath source, were considered in the dosimetric feasibility study. In the first design, the radioactive and materials each occupy half of the cylinder and in the second, the radioactive material occupies only a quater of the cylinder. The radial and azimuthal dose distributions around each source were calculated using the MCNP Monte Carlo code. Results: The preliminary hypothetical simulation and optimization results demonstrated the 87$\%$ difference between the maximum and minimum doses to the lumen wall, due to off-centering of the radiation source, could be reduced to less than 7$\%$ by optimizing the azimuthal dwell positions and times of the partially shielded intravascular brachytherapy sources. Conclusion: The novel brachytherapy source design, and conceptual source delivery system, proposed in this study show promising dosimetric characteristics for the realization of intensity modulated brachytherapy in intravascular treatment. Further development of this concept will center on building a delivery system that can precisely control the angular motion of a radiation source in a small-diameter catheter.
It is difficult to determine dosimetric characteristics for small field photon beams since such small fields do not achieve complete lateral electronic equilibrium and have steep dose gradients. Dosimetric characteristics of small field 4, 6, and 10 MeV photon beams have been measured in water with a diamond detector and compared to measurements using small volume cylindrical and plane parallel ionization chambers. Percent depth dose (PDD) and beam profiles for 6 and 10 MeV photon beams were measured with diamond detector and cylindrical ion chamber for small fields ranging from $1{\times}1\;to\;4{\times}4cm^2$. Total scatter factors($S_{c,p}$) for 4, 6, and 10 MeV photon beams were measured with diamond detector, cylindrical and plane parallel ion chambers for small fields ranging from $1{\times}1\;to\;4{\times}4cm^2$. The $S_{c,p}$ factors obtained with three detectors for 4, 6, and 10 MeV photon beams agreed well ($\pm1.2%$) for field sizes greater than $2{\times}2,\;2.5{\times}2.5,\;and\;3{\times}3\;cm^2$, respectively. For smaller field sizes, the cylindrical and plane parallel ionization chambers measure a smaller $S_{c,p}$ factor, as a result of the steep dose gradients across their sensitive volumes. The PDD values obtained with diamond detector and cylindrical ionization chamber for 6 and 10MeV photon beams agreed well ($\pm1.5%$) for field sizes greater than $4{\times}4\;cm^2$. For smaller field sizes, diamond detector produced a depth-dose curve which had a significantly shallower falloff than that obtained from the measurements of relative depth-dose with a cylindrical ionization chamber. For the measurements of beam profiles, a distortion in terms of broadened penumbra was observed with a cylindrical ionization chamber since diamond detector exhibited higher spatial resolution. The diamond detector with small sensitive volume, near water equivalent, and high spatial resolution is suitable detector compared to ionization chambers for the measurements of small field photon beams.
In this study, a scintillation resin for 3D printing was fabricated with 1.0 wt% of PPO organic scintillator, 5.0 wt% of MMA, and commercial acrylic resin. Using the scintillation resin, 3D-shaped plastic scintillator radiation sensors were successfully fabricated quickly and inexpensively with a commercial 3D DLP printer. The 3D printed plastic scintillator has a good dose-output linearity of R-square 0.998 was obtained in the range of 1 to 10 nA of beam current of the 45 MeV proton beam. The developed 3D plastic scintillator has low light output, so there is a limit to its use in low-dose-rate gamma-ray or X-ray dosimetry. However, it was confirmed that the tissue equivalent material could be usefully used for measuring high energy or high dose rates radiation, such as proton beams and ultra-high dose rate beams.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.