DOI QR코드

DOI QR Code

The Output Factor of Small Field in Multileaf Collimator of 6 MV Photon Beams

다엽제한기 소조사면의 6 MV 광자선 출력선량계수

  • Lee, Ho Joon (Department of Radiation Oncology, Daegu Catholic University Medical Center) ;
  • Choi, Tae-Jin (Department of Radiation Oncology, Daegu Catholic University Medical Center) ;
  • Oh, Young Kee (Department of Radiation Oncology, Keimyung University Dongsan Medical Center) ;
  • Jeun, Kyung Soo (Department of Radiation Oncology, Keimyung University Dongsan Medical Center) ;
  • Lee, Yong Hee (Department of Radiation Oncology, Keimyung University Dongsan Medical Center) ;
  • Kim, Jin Hee (Department of Radiation Oncology, Keimyung University Dongsan Medical Center) ;
  • Kim, Ok Bae (Department of Radiation Oncology, Keimyung University Dongsan Medical Center) ;
  • Oh, Se An (Department of Radiation Oncology, Youngnam University Medical Center) ;
  • Kim, Sung Kyu (Department of Radiation Oncology, Youngnam University Medical Center) ;
  • Ye, Ji Woon (Department of Radiation Oncology, Youngnam University Medical Center)
  • 이호준 (대구가톨릭대학병원) ;
  • 최태진 (대구가톨릭대학병원) ;
  • 오영기 (계명대학교 동산의료원) ;
  • 전경수 (계명대학교 동산의료원) ;
  • 이용희 (계명대학교 동산의료원) ;
  • 김진희 (계명대학교 동산의료원) ;
  • 김옥배 (계명대학교 동산의료원) ;
  • 오세안 (영남대학교병원 방사선종양학과) ;
  • 김성규 (영남대학교병원 방사선종양학과) ;
  • 예지원 (영남대학교병원 방사선종양학과)
  • Received : 2014.02.11
  • Accepted : 2014.03.13
  • Published : 2014.03.31

Abstract

The IMRT is proper implement to get high dose deliver to tumor as its shape and selective approach in radiation therapy. Since the IMRT is performed as modulated the radiation fluence by the MLC created the open shapes and its irradiation time, the dose of segment of radiation field effects on the cumulated portal dose. The accurate output factor of small and step shape of segment is important to improve the determination of deliver tumor dose as it is directly proportional to dose. This experiment performed with the 6 MV photon beam of Clinac Ex(Varian) from $3{\times}3cm^2$ to $0.5{\times}0.5cm^2$ small field size for collimator jaw in MLC free and/or for MLC open field in fixed collimator jaw $10{\times}10cm^2$ using the CC01 ion chamber, SFD diode, diamond detector and X-Omat film dosimetry. As results of normalized to the reference field of $10{\times}10cm^2$ of MLC, the output factor of $3{\times}3cm^2$ showed $0.899{\pm}0.0106$, $0.855{\pm}0.0106$ for $2{\times}2cm^2$, $0.764{\pm}0.0082$ for $1{\times}1cm^2$ and $0.602{\pm}0.0399$ for $0.5{\times}0.5cm^2$. The output factor of MLC open field has shown a maximum 3.8% higher than that of the collimator jaw open field.

종양부위의 입체적이고 선택적인 치료가 가능해 임상표적부피(clinical target vlume, CTV)에 높은 선량으로 집중조사하고 부작용을 현저히 줄이는 세기조절방사선치료는 치료예후를 향상시키고 있다. 방사선세기조절 치료는 MLC의 개방면적과 개방시간으로 조사면내 플루언스를 조정하므로 소형조사면의 선량이 누적되어 원하는 선량이 조사하게 된다. 따라서 소형조사면과 계층형 조사면의 출력선량계수의 정확성은 곧 Portal MU 결정에 정확성을 더할 수 있고, 종양에 조사되는 선량의 정확성을 향상할 수 있으므로, 이 연구는 Clinac Ex (Varian) $3{\times}3cm^2$에서 $0.5{\times}0.5cm^2$까지 조사면을 선정하였고 방사선은 6 MVX선의 소형조사면의 출력선량계수를 평가하였다. 조사면은 다엽제한기를 $40{\times}40cm^2$로 개방하고 Collimator jaw를 이용한 것과 Collimator를 $10{\times}10cm^2$로 고정하고 다엽제한기에 의한 조사면으로 구분하여 출력선량계수가 결정되었다. 검출기는 유효체적이 $0.01cm^3$이고 내경 2 mm인 CC01 (Scanditronix-Wellope)이온전리함과 SFD 다이오드 검출기(0.6 mmØ, $500{\mu}m$ 두께, Scanditronix-Wellope)와 다이아몬드 검출기(T60003, PTW)와 X-Omat film을 사용하였다. 결과는 다엽제한기 조사면의 출력선량계수는 $3{\times}3cm^2$에서 $0.899{\pm}0.0106$, $2{\times}2cm^2$에서 $0.855{\pm}0.0106$, $1{\times}1cm^2$에서 $0.764{\pm}0.0082$, $0.5{\times}0.5cm^2$에서 $0.602{\pm}0.0399$를 얻었다. Jaw를 $10{\times}10cm^2$로 고정하고 다엽제한기의 조사면의 출력계수는 MLC를 $40{\times}40cm^2$에 jaw에 의한 소형조사면의 것보다 최대 3.8% 높게 나타남을 확인하였다. 따라서 세기조절방사선치료 TPS에는 collimator jaw 보다 다엽제한기 조사면 크기의 출력선량계수가 설정되는 것이 중요함을 의미한다.

Keywords

References

  1. Klein EE, Hanley J, Bayouth J, et al: Task Group 142 report: Quality assurance of medical accelerators. Med Phys 36(9): 4197-4212 (2009) https://doi.org/10.1118/1.3190392
  2. Barbosa NA, Rosa LAR, et al: Development of a phantom for dose distribution verification in Stereotactic Radiosurgery. Physica Medica 29:461-469 (2013) https://doi.org/10.1016/j.ejmp.2013.01.002
  3. Thomas SJ, Eaton DJ, et al: Equivalent squares for small field dosimetry. The British Journal of Radiology. 81:897-901 (2008)
  4. Choi TJ, Kim JH, Kim OB, et al: Development of a New Radiotherapy Technique using the Quasi-conformation Method. J Korean Soc Ther Radiol 9(2):343-350 (1991)
  5. Kenichiro Hasumi, Yukimasa Aoki, Ryuko Wantanabe, Dean L Mann: Clinical respondse of advanced cancer patients to cellular immunotherapy and intensity-modulated radiation therapy. Oncoimmunology 2(10) (2013)
  6. Cadman P, Sidhul NPS, Ibbott G, Nelson A: Dosimetric considerations for validation of sequential IMRT process with a commercial treatment planning system. Phys Med Biol 47: 3001-3010 (2002) https://doi.org/10.1088/0031-9155/47/16/314
  7. Alfonso R, Andreo P, Capote R, et al: A new formalism for reference dosimetry of small and nonstandard fields. Medical Physics 35:5179-5186 (2008) https://doi.org/10.1118/1.3005481
  8. Francescon P, Cora S, Cavedon C: Total scatter factors of small beams: A multidetector and Monte Carlo study. Medical Physics 30:341-347 (2003) https://doi.org/10.1118/1.1544678
  9. Oh SA, Kang MK, et al: Study of the Penumbra for High-energy Photon Beams with GafchromaticTM EBT2. Journal of the Korean Physical Society 60(11):1973-1976 (2012) https://doi.org/10.3938/jkps.60.1973
  10. Varian medical system. Eclipse Algorithms Reference Guide. p43-45 (2009)
  11. Francisco SD, Günther HH, Javier P, et al: Uncertainty estimation in intensity-modulated radiotherapy absolute dosimetry verification. Int J Radiation Oncology Biol Phys 68(1): 301-310 (2007) https://doi.org/10.1016/j.ijrobp.2006.11.056
  12. Alfonso R, Andreo P, Capote R, et al: A new formalism for reference dosimetry of small and nonstandard fields. Medical Physics 35:5179-5186 (2008) https://doi.org/10.1118/1.3005481
  13. Das IJ, Ding GX, Ahnesjo A: Small fields: Nonequilibrium radiation dosimetry. Medical Physics 35:206-215 (2008) https://doi.org/10.1118/1.2815356
  14. Followill DS, Kry SF, Qin L, et al: The Radiological Physics Center's standard dataset for small field size output factors. Journal of Applied Clinical Medical Physics 13(5): 282- 289 (2012) https://doi.org/10.1120/jacmp.v13i5.3962
  15. Scott AJD, Nahum AE, Fenwick JD: Using a Monte Carlo model to predict dosimetric properties of small radiotherapy photon fields. Medical Physics 35:4671-4684 (2008) https://doi.org/10.1118/1.2975223
  16. Das IJ, Ding GX, Ahnesjo A: Small fields: Nonequilibrium radiation dosimetry. Medical Physics 35:206-215 (2008) https://doi.org/10.1118/1.2815356
  17. Gavin CS, Steve W, Narinder PS, et al: Experimental small field 6 MV output ratio analysis for various diode detector and accelerator combinations Radiotherapy and Oncology 100: 429-435 (2011) https://doi.org/10.1016/j.radonc.2011.09.002
  18. Duggan DM and Coffey II CW: Small Photon Field Dosimetry for Stereotactic Radiosurgery. Medical Dosimetry 23(3):153-159 (1998) https://doi.org/10.1016/S0958-3947(98)00013-2
  19. Klein DM, Tailor RC. Measuring output factors of small fields formed by collimator jaws and multileaf collimator using plastic scintillation detectors. Med Phys 37(10):5541-5549 (2010) https://doi.org/10.1118/1.3488981
  20. Kim JO, Siebers JV, Keall PJ, et al: A Monte Carlo study of radiation transport through multileaf collimators. Med Phys 28(12):2497-2506 (2001) https://doi.org/10.1118/1.1420734

Cited by

  1. Dosimetric Verifications of the Output Factors in the Small Field Less Than $3cm^2$ Using the Gafchromic EBT2 Films and the Various Detectors vol.25, pp.4, 2014, https://doi.org/10.14316/pmp.2014.25.4.218