• Title/Summary/Keyword: 축 변형 속도

Search Result 81, Processing Time 0.032 seconds

The Anisotropic and Viscoelastic Properties of Bone Tissue (근골격계의 골조직이 가지는 이방성 및 점탄성 특성)

  • Kim, Jin-Sung;Kwon, Jung-Sik;Roh, Jin-Ho;Lee, Soo-Yong
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.9-13
    • /
    • 2012
  • In this research, biomechanical characteristics of the bone tissue are experimentally investigated. By using specimens of the bovine bone, the mechanical properties are obtained through tension and shear tests. In experiments, non-homogeneous and anisotropic properties with respect to longitudinal and transversal directions are observed. Moreover, the viscoelastic behavior in which modulus and strength properties are dependent on strain rates is analyzed. It is expected that a numerical damage model of the bone be efficiently established based on the results.

Numerical Study on the Characteristics of Thermal Plasmas Disturbed by Inserting a Langmuir Probe (랑뮤어 탐침에 의해 변형된 열플라즈마 특성에 관한 해석적 연구)

  • Lee, J.C.;Kim, Y.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.189-194
    • /
    • 2008
  • Measurements with a Langmuir probe, which are the most often used procedures of plasma diagnostics, can disturb plasma flows and change its characteristics quite a little because the probe should be inserted into thermal flowing plasmas. In this study, we calculated the characteristics of thermal plasmas with and without the probe into an atmospheric argon free-burning arc numerically, and investigated aerodynamic and thermal disturbances with temperature and axial velocity distributions. For the modelling of thermal plasmas, we have made two governing equations, which are on the thermal-flow and electromagnetic fields, coupled together with a commercial CFD package and user-coded subroutines. It was found that thermal disturbances happened to both sides of the probe, before and behind, seriously. Due to the aerodynamic disturbance, we could find that there were the stagnation point in front of the probe and the wake behind it. Therefore, aerodynamic and thermal disturbances caused by the probe insertion should be considered to increase the reliability of the probe diagnostics.

EFFECT OF ROTATIONAL SPEED OF PROTAPERTM ROTARY FILE ON THE CHANCE OF ROOT CANAL CONFIGURATION (ProTaperTM로 근관성형시 회전 속도 변화가 근관형태에 미치는 영향)

  • Seo, Min-Chul;Jeon, Yoon-Jeong;Kang, In-Chol;Kim, Dong-Jun;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.3
    • /
    • pp.179-185
    • /
    • 2006
  • This study was conducted to evaluate canal configuration after shaping by $ProTaper^{TM}$ with various rotational speed in J-shaped simulated resin canals. Forty simulated root canals were divided into 4 groups, and instrumented using by $ProTaper^{TM}$ at the rotational speed of 250, 300, 350 and 400 rpm. Pre-instrumented and post-instrumented images were taken by a scanner and those were superimposed. Outer canal width, inner canal width, total canal width, and amount of transportation from original axis were measured at 1, 2, 3, 4, 5, 6, 7 and 8 mm from apex. Instrumentation time, instrument deformation and fracture were recorded. Data were analyzed by means of one-way ANOVA followed by Scheffe's test. The results were as follows 1. Regardless of rotational speed, at the $1{\sim}2mm$ from the apex, axis of canal was transported to outer side of a curvature, and at 3~6 mm from the apex, to inner side of a curvature. Amounts of transportation from original axis were not sienifcantly different among experimental groups except at 5 and 6 mm from the apex. 2. Instrumentation time of 350 and 400 rpm was significantly less than that of 250 and 300 rpm (p<0.01). In conclusion the rotational speed of $ProTaper^{TM}$ files in the range of $250{\sim}400rpm$ does not affect the change of canal configuration, and high rotational speed reduces the instrumentation time. However appearance of separation and distortion of Ni-Ti rotary files can occur in high rotational speed.

The Characteristic of Dyeing and Mechanical Properties of Draw Textured Yarn with High Oriented Yarn (고속방사소재 가연사의 물성 및 염색 특성)

  • Kim, Su-A;Lee, Min-Su;Kang, Ji-Man;Lee, Jun-Hee
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.86-86
    • /
    • 2012
  • 고속방사소재는 연신공정이 없이 6,000m/min이상의 고속방사공정만이 있으므로 원가절감이 되고, 빠른 냉각, 높은 변형속도 등으로 섬유의 결정화도, 분자와 결정의 배향 및 모폴로지(morphology) 변화 등의 기계적 및 섬유상의 특성이 종래의 원사와는 다르게 된다. 방사속도가 증가함에 따라 배향도가 증가하면서 결정영역 또한 증가한다. 또한 기존 연신사에 비해 큰 결정크기를 갖는데 방사속도에 에 따른 방사응력의 증가가 응력유도 결정화도를 유발하여 결정크기 및 결정화도를 증가시키고,따라서 고분자의 용융점도를 고온측으로 이동시키는 현상을 나타내게 한다. 즉, 고속방사에 있어서는 연신에 필요한 임계응력 이상의 과도한 응력이 가해짐으로 인해 결정구조가 일반 연신사에 비해 현저히 발달한다는 것을 알 수 있다. 고속방사 원사를 통일한 조건으로 염색하는 경우 기존의 연신사보다 염착량이 많아 농색으로 염색이 가능하고 염착속도도 빠른 특징을 갖는 데이는 고속방사 원사의 비결정 배향이 낮고 느슨한 구조를 갖기 때문에 염료의 침투가 용이한 것으로 해석되고 있다. PET 섬유는 방사 후 형태안정성을 부여하기 위해서 염색 전처리 공정에서 열을 가하게 된다. 이런 과정에서 섬유의 미세구조가 변하게 되는데,특히 고속방사의 경우 섬유 형성과정이 연신사와는 다르므로 열에 의한 구조 변화와 이에 따른 염색성 변화에 대해 검토해 보는 것은 고속방사의 응용면에서 꼭 필요하다. 본 연구에서는 고속방사소재의 가장 단점인 잔류신도, 저수축현상, stiff감을 보완하면서 고속방사소재의 장점인 심색성을 부각시켜 차별화된 복합사 제조기술을 개발하기 위해 그 기술개발이 기초 연구로서 일반 일반 DTY사와 고속방사소재인 HOY사를 이용한 DTY사의 물성 및 염색 특성을 비교분석 하고자 한다.

  • PDF

Spin Test of 5 kWh Composite Flywheel Rotor (5 kWh 복합재 플라이휠 로터의 회전 시험)

  • Han, Hoon-Hee;Ha, Sung-Kyu;Kim, Jae-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3135-3140
    • /
    • 2010
  • A 5 kWh composite flywheel rotor was designed and manufactured, and its spin test was performed to monitor strain distribution and burst speed. Strain distribution in radial and circumferential directions of the rotor were measured using a wireless telemetry system based on bluetooth technology for real-time strain measurement. The strains was compared with pre-calculated design values to verify the initial rotor design. We noticed the rotor failed at 19,499 rpm in the spin test, 11 % lower than the predicted burst speed of 22,000 rpm. Failure occurred at the hub which connects the shaft and the composite rotor. The performance of the composite rotor was confirmed in a general sense, and the danger of unexpected failure of composite rotor during high-speed spinning was also demonstrated in this paper. Special attention should be paid to not only composite rotor but also hub when designing a flywheel energy storage system. The telemetry system needs to be further developed, especially enduring the high centrifugal forces, and can be used in a real time monitoring system for the flywheel energy storage system.

Flexural Behavior of Large-Diameter Composite PHC pile Using In-Filled Concrete and Reinforcement (속채움 콘크리트와 철근으로 보강된 대구경 합성 PHC말뚝의 휨성능 평가)

  • Bang, Jin-Wook;Park, Chan-Kyu;Yang, Seong-Yeong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.109-115
    • /
    • 2016
  • A demand of high bearing capacity of piles to resist heavy static loads has been increased. For this reason, the utilization of large diameter PHC piles including a range from 700 mm to 1,200 mm have been increased and applied to the construction sites in Korea recently. In this study, in order to increase the flexural strength capacity of the PHC pile, the large diameter composite PHC pile reinforced by in-filled concrete and reinforcement was developed and manufactured. All the specimens were tested under four-point bending setup and displacement control. From the strain behavior of transverse bar, it was found that the presence of transverse bar was effective against crack propagation and controlling crack width as well as prevented the web shear cracks. The flexural strength and mid-span deflection of LICPT specimens were increased by a maximum of 1.08 times and 1.19 times compared to the LICP specimens. This results indicated that the installed transverse bar is in an advantageous ductility performance of the PHC piles. A conventional layered sectional analysis for the pile specimens was performed to investigate the flexural strength according to the each used material. The calculated bending moment of conventional PHC pile and composite PHC pile, which was determined by P-M interaction curve, showed a safety factor 1.13 and 1.16 compared to the test results.

Experimental Study on Unconfined Compression Strength and Split Tensile Strength Properties in relation to Freezing Temperature and Loading Rate of Frozen Soil (동결 온도와 재하속도에 따른 동결토의 일축압축 및 쪼갬인장 강도특성)

  • Seo, Young-Kyo;Choi, Heon-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.19-26
    • /
    • 2012
  • Recently the world has been suffering from difficulties related to the demand and supply of energy due to the democratic movements sweeping across the Middle East. Consequently, many have turned their attention to never-developed extreme regions such as the polar lands or deep sea, which contain many underground resources. This research investigated the strength and initial elastic modulus values of eternally frozen ground through a uniaxial compression test and indirect tensile test using frozen artificial soil specimens. To ensure accurate test results, a sandymud mixture of standard Jumunjin sand and kaolinite (20% in weight) was used for the specimens in these laboratory tests. Specimen were prepared by varying the water content ratio (7%, 15%, and 20%). Then, the variation in the strength value, depending on the water content, was observed. This research also established three kinds of environments under freezing temperatures of $-5^{\circ}C$, $-10^{\circ}C$, and $-15^{\circ}C$. Then, the variation in the strength value was observed, depending on the freezing environment. In addition, the tests divided the loading rate into 6 phases and observed the variation in the stress-strain ratio, depending on the loading rate. The test data showed that a lower freezing temperature resulted in a larger strength value. An increase in the ice content in the specimen with the increase in the water content ratio influenced the strength value of the specimen. A faster load rate had a greater influence on the uniaxial compression and indirect tensile strengths of a frozen specimen and produced a different strength engineering property through the initial tangential modulus of elasticity. Finally, the long-term strength under a constant water content ratio and freezing temperature was checked by producing stress-strain ratio curves depending on the loading rate.

A Blind Watermarking for 3-D Mesh Sequence Using Temporal Wavelet Transform of Vertex Norms (꼭지점 좌표 벡터 크기값의 시간축 웨이블릿 변환을 이용한 3차원 메쉬 시퀀스의 블라인드 워터마킹)

  • Kim, Min-Su;Cho, Jae-Won;Prost, Remy;Jung, Ho-Youl
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.256-268
    • /
    • 2007
  • In this paper, we present a watermarking method for 3-D mesh sequences. The main idea is to transform vertex norm with the identical connectivity index along temporal axis using wavelet transform and modify the distribution of wavelet coefficients in temporally high (or middle) frequency frames according to watermark bit to be embedded. All vertices are divided into groups, namely bin, using the distribution of coefficients in low frequency frames. As the vertices with the identical connectivity index over whole frames belong to one bin, their wavelet coefficients are also assigned into the same bin. Then, the watermark is embedded into the wavelet coefficients of vertex norm. Due to the use of the distribution, our method can retrieve the hidden watermark without any information about original mesh sequences in the process of watermark detection. Through simulations, we show that the proposed is flirty robust against various attacks that are probably concerned in copyright protection of 3-D mesh sequences.

Fracture Behavior of Adhesive-Bonded Aluminum Foam with Double Cantilever Beam (접착제로 접합된 이중외팔보 알루미늄폼의 파괴 거동에 관한 연구)

  • Bang, Hye-Jin;Lee, Sang-Kyo;Cho, Chongdu;Cho, Jae-Ung;Choi, Hae-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.521-526
    • /
    • 2014
  • In this study, closed-cell aluminum foam with an initial crack was investigated to produce an axial load-time graph. Using the 10-kN Landmarks of MTS Corporation, a 15-mm/min velocity of mode I shape was applied to the aluminum foam specimen using the displacement control method. ABAQUS 6.10 simulation was used to model and analyze the identical model in three dimensions under conditions identical to those of the experiment. The energy release rate was calculated on the basis of an axial load-displacement graph obtained from the experiment and a transient image of the crack length, and then an FE model was analyzed on the basis of this fracture energy condition. The relation between load and displacement was discussed; it was found that the aluminum foam deformed somewhat less than the adhesive layer owing to the difference in elastic modulus.

Physical Modeling of Plucked String Based on Fixed Spatial Sampling Interval (고정된 공간 축 샘플링 간격을 적용한 뜯는 현악기의 현에 관한 물리적 모델링)

  • 강명수;김규년
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.3-12
    • /
    • 2001
  • In physical modeling of plucked string instruments, the vibration of a string is typically simulated by the linear system. Currently the Digital Waveguides of J.O.Smith[1] are widely used to get a high quality sound of the plucked string instrument. He used the wave equation to derive the Digital Waveguides and emphasized the time variable. In this thesis, new model of plucked string is proposed to improve the sound quality emphasizing the spatial variable of the wave equation. In our model, we used the fixed sampling interval which is not dependent on the speed of the wave. So we could get more detailed description of wave movement by the time variable. As a result, the new model could produce a higher quality sound of plucked string instrument.

  • PDF