Proceedings of the Korea Information Processing Society Conference
/
2000.10a
/
pp.313-316
/
2000
대부분의 온라인 전자상거래에서 상품 추천 서비스는 사용자의 정보 또는 구매 이력을 가지고 카테고리를 중심으로 상품을 추출하여 추천을 하는 구조이다. 또, 카테고리를 중심으로 추천을 하다 보니 단일한 구매 패턴에 의해서만 추천을 하게 되고, 상품에 각각에 대한 연관성을 찾아보기 힘들다. 또 단일 구매 패턴은 계산 비용이 작기는 하지만 사용자의 구매 패턴을 정확하게 반영하기 어렵다. 본 논문에서는 이러한 문제를 해결하기 위하여 카테고리 독립적이고, 다중 구매패턴을 고려한 상품추천 서비스의 설계를 제안한다 이를 위하여 단일 항목간의 구조화를 통하여 항목간의 연계성을 고려한 구조를 설계한다.
Annual Conference on Human and Language Technology
/
2015.10a
/
pp.206-208
/
2015
온라인을 통해 접하게 되는 잘못된 우리말 표현과 외국어 중심 교육 등으로 인하여 학생들의 한국어 능력, 특히 글쓰기 능력에 우려가 높아지고 있다. 본 논문에서는 잘 작성된 말뭉치에서 얻어진 데이터에 기반한 한국어 글쓰기 도우미 시스템을 제안한다. 시스템은 작성 중인 문맥에 맞은 단어를 추천하는 용언/체언 추천과 입력 문장의 주요 단어가 포함된 말뭉치의 문장을 제시하는 유사 문장 추천, 문서의 단어가 문서의 문맥 단어와 조화로운지를 확인하는 어휘 응집성 검사, 단어 중복도를 확인하기 위한 단어 빈도 검사 기능을 제공한다. 시스템에서는 사용자가 말뭉치를 추가하면 색인을 구축할 수 있어 원하는 분야에 맞는 추천과 검사 기능을 제공할 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.1512-1513
/
2015
본 연구에서는 다차원 추천시스템을 기반으로 동영상 음악추천 시 평가 함수R을 극대화하기 위한 각 다차원 구성요소들은 무엇이고, 이들의 상대적 가중치에 대하여 연구하였다. 일반적으로 추천시스템의 구성변수가 많아질수록 평가 함수R을 극대화하는 것이 유리하나, 계산의 복잡성으로 예측성능과 추천유효성을 저해할 수 있어 구성변수의 증가와 추천 성능을 동시에 해결하는 것이 필요하다. 연구대상 음악동영상은 일반 영상과 달리 오디오 정보와 시선 정보를 싱크하여 감정의 흐름을 추론한다. 실험 대상자는 사용자가 선호할 것으로 예상되는 음악동영상을 추론하기 위하여 대학생으로 한정한다.
Kim, Chae-Reen;Park, Joo-Hyun;Yue, Du-qiu;Park, Doo-Soon
Proceedings of the Korea Information Processing Society Conference
/
2014.11a
/
pp.1081-1084
/
2014
최근 들어, 많은 추천시스템들이 연구 되고 있으며, 대부분은 개인 맞춤형 추천 시스템이 연구되고 있다. 기존의 영화추천시스템에서는 희박성의 문제가 제기된다. 본 논문에서는 희박성에 대해 보안하고자, 개인리뷰에 대한 가중치를 활용한다. 그 결과 사용자에게 정보의 제공에 대해 효율성을 높이고, 사용자마다 영화에 대한 리뷰에 따른 감정 및 사용자의 정보들을 반영한 영화추천시스템을 설계 및 구현한다.
Proceedings of the Korea Information Processing Society Conference
/
2009.11a
/
pp.731-732
/
2009
MP3 기기 및 음악재생과 관련된 인터페이스는 이미 우리 생활 곳곳에 전반적으로 자리잡고 있다. 기존의 수동적으로 음악 파일을 검색하여 듣는 방법이 아닌, 사용자의 심리상태, 관심사와 외부변수를 고려하여 사용자가 선호할 만한 음악추천 서비스를 제공하는 방법에 대해 논의한다. 본 논문에서는 데이터 마이닝의 기법인 연관 규칙, 필터링과 추천방법을 통하여 사용자가 원하는 서비스 정보를 효율적으로 도출하는 추천 시스템을 설계한다. 또한 이러한 시스템의 추천목록에 대한 사용자의 만족도를 스스로 평가하는 방법에 대해서도 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2008.11a
/
pp.782-784
/
2008
급속하게 확산된 비즈니스 웹 사이트로 인해 웹상에 상품의 정보가 기하급수적으로 증가하여 정보 과부하 문제가 발생하였다. 이를 극복하기 위해 내용 기반 추천 시스템, 협업 필터링 추천 시스템 등의 개인화 추천 시스템이 발전했으나 사용자의 성향과 아이템의 성향을 반영하지 못하고 있다. 본 연구에서는 웹상에서 사용자의 행동을 관찰하여 상품의 구매경로와 판매의 상관관계에 따라 각 사용자의 성향과 그룹의 성향, 아이템의 성향을 측정한 뒤 벡터의 내적을 이용하여 사용자의 성향에 가장 적합한 상품의 유사도를 계산하고 추천하는 시스템을 제안한다.
With the fast development of Internet environment, e-Commerce is rapidly increasing. n the expanding e-Commerce environment, the need for a new e-Commerce systems what will deliver products to the customer rapidly and increase sales is growing bigger. Recently, these requirements brought many researches on recommender systems. However, until now, those recommender systems have a limit because it takes too much time for recommender systems to give customers the recommendations in real time, if the number of purchase data of customers is large. So this paper concerns on the recommender systems using collaborative filtering as one of the solutions to increase the competitive power. We proposed and experimented the more improved recommender systems which could decrease the data size to shorten the recommending time by using the representative category of the product which customers want to buy. Also, we design and implement a recommender system using Enterprise JavaBeans.
Combining collaborative filtering with some other technique is most common in hybrid recommender systems. As many recommended items from collaborative filtering seem to be similar with respect to content, the collaborative-content hybrid system suffers in terms of quality recommendation and recommending new items as well. To alleviate such problem, we have developed a novel method that uses a diversity metric to select the dissimilar items among the recommended items from collaborative filtering, which together with the input when fed into content space let us improve and include new items in the recommendation. We present experimental results on movielens dataset that shows how our approach performs better than simple content-based system and naive hybrid system.
Park, Sung-Eun;Lee, Dong-Joo;Kahng, Min-Suk;Lee, Sang-Goo
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.122-125
/
2010
사용자와 취향이 비슷한 사용자를 찾고, 이 유사 사용자가 선호한 아이템을 추천하는 협력적 필터링방식은 일반적으로 많이 사용되는 추천 방식이다. 하지만 협력적 필터링 방식은 어떤 상황적 요소도 고려하지 않아 모든 상황에서 동일한 추천 결과를 제시하게 된다. 반면, 상황을 고려한 추천 방식은 다른 상황에서 그 상황에 적합하다고 판단되는 추천 리스트를 보여주는 다양성을 가지지만 개인의 선호를 반영하지 못하는 한계를 가진다. 이에 협력적 필터링 방식과 상황에 따른 추천 방식을 함께 고려하려는 시도가 있다. 본 논문에서는 시간 상황에 따른 음악 추천 시, 전체 상황에서 가장 유사한 사용자를 찾고 이 유사 사용자의 현재 상황에서의 선호 아이템을 추천하는 모델을 제시하고 실험을 통하여 이 모델의 한계와 실용 가능한 상황을 제시한다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.19-22
/
2022
서비스 관점에서 구축되는 추천 시스템의 성능은 얼마나 효율적인 추천 모델을 적용하여 심층적으로 설계되었는가에 좌우된다고도 볼 수 있다. 특히, 추천 시스템의 초개인화는 세계적인 추세로 1~2년 전부터 구글, 아마존, 알리바바 등의 데이터 플랫폼 강자들이 경쟁적으로 딥 러닝 기반의 알고리즘을 개발, 자신들의 추천 서비스에 적용하고 있다. 본 연구는 갈수록 고도화되는 추천 시스템으로 인해 발생하는 여러 문제들 중 사용자 또는 서비스 정보가 부족하여 계속적으로 발생하고 있는 Cold-start 문제와 추천할 서비스와 사용자는 지속적으로 늘어나지만 실제로 사용자가 소비하게 되는 서비스의 비율은 현저하게 감소하는 데이터 희소성 문제 (Sparsity Problem)에 대한 솔루션을 모색하는 알고리즘 관점에서 연구하고자 한다. 본 논문은 첫 단계로, 적용하는 메타데이터에 따라 추천 결과의 정확성이 얼마나 차이가 나는지를 보이고 딥러닝 비지도학습 방식을 메타데이터 선정 및 추출에 적용하여 실시간으로 변화하는 소비자의 실제 생활 패턴 및 니즈를 예측해야 하는 필요성에 대해서 기술하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.