• Title/Summary/Keyword: 추천 성과

Search Result 1,717, Processing Time 0.031 seconds

A Study on Product Recommendation Service using Purchasing Pattern of Buyer (구매자의 구매 패턴을 이용한 상품추천서비스에 대한 연구)

  • Shin, Min-Su;Hwang, Jun-Won;Kim, Sung-Hak;Lee, Chang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.313-316
    • /
    • 2000
  • 대부분의 온라인 전자상거래에서 상품 추천 서비스는 사용자의 정보 또는 구매 이력을 가지고 카테고리를 중심으로 상품을 추출하여 추천을 하는 구조이다. 또, 카테고리를 중심으로 추천을 하다 보니 단일한 구매 패턴에 의해서만 추천을 하게 되고, 상품에 각각에 대한 연관성을 찾아보기 힘들다. 또 단일 구매 패턴은 계산 비용이 작기는 하지만 사용자의 구매 패턴을 정확하게 반영하기 어렵다. 본 논문에서는 이러한 문제를 해결하기 위하여 카테고리 독립적이고, 다중 구매패턴을 고려한 상품추천 서비스의 설계를 제안한다 이를 위하여 단일 항목간의 구조화를 통하여 항목간의 연계성을 고려한 구조를 설계한다.

  • PDF

Korean Writing Assistant System using Corpus Statistics (말뭉치의 통계정보를 이용한 한국어 글쓰기 도우미 시스템)

  • Lee, Jae-Seoung;Yu, Joo-Hyun;Lee, Hyun-Ho;Lee, Hyun Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.206-208
    • /
    • 2015
  • 온라인을 통해 접하게 되는 잘못된 우리말 표현과 외국어 중심 교육 등으로 인하여 학생들의 한국어 능력, 특히 글쓰기 능력에 우려가 높아지고 있다. 본 논문에서는 잘 작성된 말뭉치에서 얻어진 데이터에 기반한 한국어 글쓰기 도우미 시스템을 제안한다. 시스템은 작성 중인 문맥에 맞은 단어를 추천하는 용언/체언 추천과 입력 문장의 주요 단어가 포함된 말뭉치의 문장을 제시하는 유사 문장 추천, 문서의 단어가 문서의 문맥 단어와 조화로운지를 확인하는 어휘 응집성 검사, 단어 중복도를 확인하기 위한 단어 빈도 검사 기능을 제공한다. 시스템에서는 사용자가 말뭉치를 추가하면 색인을 구축할 수 있어 원하는 분야에 맞는 추천과 검사 기능을 제공할 수 있다.

  • PDF

Music Moving Picture Recommendation Service Based on Emotional Reasoning (감성추론기반 음악동영상 추천서비스)

  • Park, Kyumin;Moon, Nammee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1512-1513
    • /
    • 2015
  • 본 연구에서는 다차원 추천시스템을 기반으로 동영상 음악추천 시 평가 함수R을 극대화하기 위한 각 다차원 구성요소들은 무엇이고, 이들의 상대적 가중치에 대하여 연구하였다. 일반적으로 추천시스템의 구성변수가 많아질수록 평가 함수R을 극대화하는 것이 유리하나, 계산의 복잡성으로 예측성능과 추천유효성을 저해할 수 있어 구성변수의 증가와 추천 성능을 동시에 해결하는 것이 필요하다. 연구대상 음악동영상은 일반 영상과 달리 오디오 정보와 시선 정보를 싱크하여 감정의 흐름을 추론한다. 실험 대상자는 사용자가 선호할 것으로 예상되는 음악동영상을 추론하기 위하여 대학생으로 한정한다.

A Movie Recommendation System using Individual Review (개인 리뷰를 통한 영화추천 시스템)

  • Kim, Chae-Reen;Park, Joo-Hyun;Yue, Du-qiu;Park, Doo-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.1081-1084
    • /
    • 2014
  • 최근 들어, 많은 추천시스템들이 연구 되고 있으며, 대부분은 개인 맞춤형 추천 시스템이 연구되고 있다. 기존의 영화추천시스템에서는 희박성의 문제가 제기된다. 본 논문에서는 희박성에 대해 보안하고자, 개인리뷰에 대한 가중치를 활용한다. 그 결과 사용자에게 정보의 제공에 대해 효율성을 높이고, 사용자마다 영화에 대한 리뷰에 따른 감정 및 사용자의 정보들을 반영한 영화추천시스템을 설계 및 구현한다.

A Music Recommender Service System using Data Mining and Filtering (데이터 마이닝과 필터링을 이용한 음악추천 서비스 시스템)

  • Lee, Sang-jae;Kim, Won-young;Kim, Ung-mo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.731-732
    • /
    • 2009
  • MP3 기기 및 음악재생과 관련된 인터페이스는 이미 우리 생활 곳곳에 전반적으로 자리잡고 있다. 기존의 수동적으로 음악 파일을 검색하여 듣는 방법이 아닌, 사용자의 심리상태, 관심사와 외부변수를 고려하여 사용자가 선호할 만한 음악추천 서비스를 제공하는 방법에 대해 논의한다. 본 논문에서는 데이터 마이닝의 기법인 연관 규칙, 필터링과 추천방법을 통하여 사용자가 원하는 서비스 정보를 효율적으로 도출하는 추천 시스템을 설계한다. 또한 이러한 시스템의 추천목록에 대한 사용자의 만족도를 스스로 평가하는 방법에 대해서도 제안한다.

Personalized Recommendation System Using User and Item Properties (사용자와 상품의 특성을 이용한 개인화 추천 시스템)

  • Yoon-Hye Kim;Jehwan Oh;Eunseok Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.782-784
    • /
    • 2008
  • 급속하게 확산된 비즈니스 웹 사이트로 인해 웹상에 상품의 정보가 기하급수적으로 증가하여 정보 과부하 문제가 발생하였다. 이를 극복하기 위해 내용 기반 추천 시스템, 협업 필터링 추천 시스템 등의 개인화 추천 시스템이 발전했으나 사용자의 성향과 아이템의 성향을 반영하지 못하고 있다. 본 연구에서는 웹상에서 사용자의 행동을 관찰하여 상품의 구매경로와 판매의 상관관계에 따라 각 사용자의 성향과 그룹의 성향, 아이템의 성향을 측정한 뒤 벡터의 내적을 이용하여 사용자의 성향에 가장 적합한 상품의 유사도를 계산하고 추천하는 시스템을 제안한다.

Design and Implementation of e-Commerce Applications using Improved Recommender Systems (개선된 추천시스템을 이용한 전자상거래시스템 설계 및 구현)

  • Kim, Yeong-Seol;Kim, Byeong-Cheon;Yun, Byeong-Ju
    • The KIPS Transactions:PartD
    • /
    • v.9D no.2
    • /
    • pp.329-336
    • /
    • 2002
  • With the fast development of Internet environment, e-Commerce is rapidly increasing. n the expanding e-Commerce environment, the need for a new e-Commerce systems what will deliver products to the customer rapidly and increase sales is growing bigger. Recently, these requirements brought many researches on recommender systems. However, until now, those recommender systems have a limit because it takes too much time for recommender systems to give customers the recommendations in real time, if the number of purchase data of customers is large. So this paper concerns on the recommender systems using collaborative filtering as one of the solutions to increase the competitive power. We proposed and experimented the more improved recommender systems which could decrease the data size to shorten the recommending time by using the representative category of the product which customers want to buy. Also, we design and implement a recommender system using Enterprise JavaBeans.

Combining Collaborative, Diversity and Content Based Filtering for Recommendation System (협업적 여과와 다양성, 내용기반 여과를 혼합한 추천 시스템)

  • Shrestha, Jenu;Uddin, Mohammed Nazim;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.1
    • /
    • pp.101-115
    • /
    • 2008
  • Combining collaborative filtering with some other technique is most common in hybrid recommender systems. As many recommended items from collaborative filtering seem to be similar with respect to content, the collaborative-content hybrid system suffers in terms of quality recommendation and recommending new items as well. To alleviate such problem, we have developed a novel method that uses a diversity metric to select the dissimilar items among the recommended items from collaborative filtering, which together with the input when fed into content space let us improve and include new items in the recommendation. We present experimental results on movielens dataset that shows how our approach performs better than simple content-based system and naive hybrid system.

  • PDF

Music Recommender System Weighting Similar Users' Preference in the Temporal Context (유사 취향 사용자의 시간 상황에 따른 선호 아이템에 가중치를 둔 음악 추천)

  • Park, Sung-Eun;Lee, Dong-Joo;Kahng, Min-Suk;Lee, Sang-Goo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.122-125
    • /
    • 2010
  • 사용자와 취향이 비슷한 사용자를 찾고, 이 유사 사용자가 선호한 아이템을 추천하는 협력적 필터링방식은 일반적으로 많이 사용되는 추천 방식이다. 하지만 협력적 필터링 방식은 어떤 상황적 요소도 고려하지 않아 모든 상황에서 동일한 추천 결과를 제시하게 된다. 반면, 상황을 고려한 추천 방식은 다른 상황에서 그 상황에 적합하다고 판단되는 추천 리스트를 보여주는 다양성을 가지지만 개인의 선호를 반영하지 못하는 한계를 가진다. 이에 협력적 필터링 방식과 상황에 따른 추천 방식을 함께 고려하려는 시도가 있다. 본 논문에서는 시간 상황에 따른 음악 추천 시, 전체 상황에서 가장 유사한 사용자를 찾고 이 유사 사용자의 현재 상황에서의 선호 아이템을 추천하는 모델을 제시하고 실험을 통하여 이 모델의 한계와 실용 가능한 상황을 제시한다.

  • PDF

Consideration upon Importance of Metadata Extraction for a Hyper-Personalized Recommender System on Unsupervised Learning (비지도 학습 기반 초개인화 추천 서비스를 위한 메타데이터 추출의 중요성 고찰)

  • Paik, Juryon;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.19-22
    • /
    • 2022
  • 서비스 관점에서 구축되는 추천 시스템의 성능은 얼마나 효율적인 추천 모델을 적용하여 심층적으로 설계되었는가에 좌우된다고도 볼 수 있다. 특히, 추천 시스템의 초개인화는 세계적인 추세로 1~2년 전부터 구글, 아마존, 알리바바 등의 데이터 플랫폼 강자들이 경쟁적으로 딥 러닝 기반의 알고리즘을 개발, 자신들의 추천 서비스에 적용하고 있다. 본 연구는 갈수록 고도화되는 추천 시스템으로 인해 발생하는 여러 문제들 중 사용자 또는 서비스 정보가 부족하여 계속적으로 발생하고 있는 Cold-start 문제와 추천할 서비스와 사용자는 지속적으로 늘어나지만 실제로 사용자가 소비하게 되는 서비스의 비율은 현저하게 감소하는 데이터 희소성 문제 (Sparsity Problem)에 대한 솔루션을 모색하는 알고리즘 관점에서 연구하고자 한다. 본 논문은 첫 단계로, 적용하는 메타데이터에 따라 추천 결과의 정확성이 얼마나 차이가 나는지를 보이고 딥러닝 비지도학습 방식을 메타데이터 선정 및 추출에 적용하여 실시간으로 변화하는 소비자의 실제 생활 패턴 및 니즈를 예측해야 하는 필요성에 대해서 기술하고자 한다.

  • PDF