• Title/Summary/Keyword: 추천 서비스

Search Result 1,117, Processing Time 0.03 seconds

Implementation of product recommendation system through mashup of weather information and peripheral information (기상정보와 주변 정보의 매시업을 통한 상품추천시스템 구현)

  • Lee, Ju-Eun;Kim, You-Jin;Kim, Chae-Yeon;Lee, Eun-Sol;Jang, Jae Suk;Kim, Sung-Jin;Choi, Jae-Hong;Lee, Jun-Dong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.153-155
    • /
    • 2019
  • 본 논문에서는 다양한 아두이노 무선센서 모듈과 Raspberry Pi, 웹서버를 이용한 IOT 기반 환경정보 수집시스템과 기상청 API를 통한 기상정보, 상점 서비스를 매시업하여 상품추천시스템을 구현하였다. 이 시스템은 사용자가 주변 환경의 데이터를 정확하게 확인하고 그에 맞는 상품을 추천받을 수 있도록 한다. 상품추천시스템에서는 상점 외부에 부착된 환경정보 수집시스템에서 측정한 데이터와 기상청 API 데이터를 DB에 저장하고 DB에 저장된 데이터를 이용하여 상황에 맞는 기후화면디자인과 환경정보 데이터를 html로 구성하여 보여준다. Raspverry Pi에 연결된 모니터를 통해 실시간으로 정보를 보여주며 일정 시간 간격으로 관련 상품 광고를 보여주며 필요한 물건을 추천해준다.

  • PDF

A Prospective Extension Through an Analysis of the Existing Movie Recommendation Systems and Their Challenges (기존 영화 추천시스템의 문헌 고찰을 통한 유용한 확장 방안)

  • Cho Nwe Zin, Latt;Muhammad, Firdaus;Mariz, Aguilar;Kyung-Hyune, Rhee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.1
    • /
    • pp.25-40
    • /
    • 2023
  • Recommendation systems are frequently used by users to generate intelligent automatic decisions. In the study of movie recommendation system, the existing approach uses largely collaboration and content-based filtering techniques. Collaborative filtering considers user similarity, while content-based filtering focuses on the activity of a single user. Also, mixed filtering approaches that combine collaborative filtering and content-based filtering are being used to compensate for each other's limitations. Recently, several AI-based similarity techniques have been used to find similarities between users to provide better recommendation services. This paper aims to provide the prospective expansion by deriving possible solutions through the analysis of various existing movie recommendation systems and their challenges.

Toward Preventing Cold-start Problem: Basis Recommendation System (콜드스타트 문제 완화를 위한 기저속성 추출 기반 추천시스템 제안)

  • Jungseob Lee;Hyeonseok Moon;Chanjun Park;Myunghoon Kang;Seungjun Lee;Sungmin Ahn;Jeongbae Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.427-430
    • /
    • 2022
  • 추천시스템에서 콜드스타트 문제를 해결하기 위해 다양한 연구들이 진행되고 있다. 하지만, 대부분의 연구는 아직도 사용자 기반의 히스토리 데이터셋을 반드시 필요로 하여, 콜드스타트 문제를 완벽히 해결하지 못하고 있다. 이에 본 논문은 콜드스타트 문제를 완화할 수 있는 기저속성 기반의 추천시스템을 제안한다. 제안하는 방법론을 검증하기 위해, 직접 수집한 한국어 영화 리뷰 데이터셋을 기반으로 성능을 검증하였으며, 평가 결과 제안한 방법론이 키워드와 사용자의 리뷰 점수를 효과적으로 반영한 추천시스템임을 확인할 수 있었고, 데이터 희소성 및 콜드스타트 문제를 완화하여 기존의 텍스트 기반 랭킹 시스템의 성능을 압도하는 것을 확인하였다. 더 나아가 제안된 기저속성 추천시스템은 추론 시에 GPU 컴퓨팅 자원을 요구하지 않기에 서비스 측면에서도 많은 이점이 있음을 확인하였다.

  • PDF

A Research for Appling Singular Value Decomposition to Collaborative Filtering for Coping With the Sparsity of Rating matrix (협력적 여과에서 평가 행렬의 희소성 문제를 해결하기 위한 Singular Value Decomposition의 적용 방법에 관한 연구)

  • Jeong, Jun;Jeong, Dae-jin;Kim, Yong-Han;Rhee, Phill-Kyu
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.317-322
    • /
    • 2000
  • 인터넷의 발달로 사용자들은 인터넷에서 필요한 정보를 습득할 수 있을 뿐만 아니라, 생활에 필요한 여러 가지 활동들을 할 수 있게 되었다. 특히 주목받는 부분은 구매 활동이다. 따라서 수많은 기업들이 사람들의 구매 활동에 관련된 전자상거래에 투자하고 있고, 현재 Amazon.com 등과 같은 세계적인 사이트들이 서비스를 실시하고 있다. 또한, 전자상거래 사이트들은 사용자들의 구매 활동을 도와주기 위해 추천 시스템의 도입을 추진하고 있다. 추천 시스템은 사용자들로부터 얻어진 정보를 학습하여 이용 가능한 상품 중에서 고객이 좋아할 만한 것은 추천해 주는 시스템이다. 본 논문에서는 추천 시스템에서 사용되는 주요한 방법인 협력적 여과방법에서 초기 rating 행렬의 희소성 문제를 해결하기 위하여 Singular Value decompositon의 적용 방법을 제안하고 있다.

  • PDF

Collaborative Filtering using User Profiles Informal ion and Real-Time Context Information (사용자 프로파일 정보와 실시간 컨텍스트 정보를 이용한 협력적 필터링)

  • Lee Se-Il;Lee Sang-Yong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.336-339
    • /
    • 2006
  • 추천시스템에서 가장 많이 사용하고 있는 협력적 필터링 방법을 모바일 기기 등에서 사용하려면 추천 정보와 사용자들의 평가 정보가 부족하여 추천의 질이 떨어지게 된다. 이러한 문제를 해결하기 위해 실시간으로 얻어진 컨텍스트 정보를 정량화하여 협력적 필터링에 적용함으로써 보다 나은 추천 결과를 얻을 수 있었다. 그럼에도 불구하고 평가를 하기 위한 컨텍스트 정보가 충분하지 못한 경우 부정확한 결과를 가져올 수 있다. 또한 사용자 정보 평가 과정 중 정량화 단계의 분류 과정을 단순히 하게 되면 서비스 받는 사용자가 정확한 그룹에 분류되어 정확도가 결여되는 문제가 발생한다. 본 논문에서는 실시간으로 얻을 수 있는 컨텍스트 정보가 부족한 경우, 내용 기반 필터링에서 많이 사용하고 있는 사용자 프로파일 정보를 실시간 컨텍스트 정보와 결합한다. 그리고 정량화 단계를 개선하여 협력적 필터링함으로써 기존의 방법보다 향상된 결과를 얻을 수 있다.

  • PDF

A Webtoon Recommendation System Using Personal Propensity in Hadoop (하둡에서 개인 성향을 이용한 웹툰 추천 시스템)

  • Lee, Keon-Ho;Yoon, Won-Tak;Hwang, Dong-Hyun;Park, Doo-Soon
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.408-411
    • /
    • 2016
  • 최근 국내의 콘텐츠 생산률이 증가함에 따라, 많은 사람들이 즐길 수 있는 콘텐츠들이 많아 졌다. 하지만 사람들은 많아진 콘텐츠로 인해, 오히려 원하는 정보를 빠른 시간에 얻는 것이 힘들어졌다. 이러한 문제를 해결하기 위해 다양한 방식의 새로운 서비스들이 제공 되고 있다. 추천 시스템 중에서 웹툰을 추천해주는 알고리즘으로 협업필터링 방법이 가장 많이 사용되고 있다. 협업필터링 방법에는 희박성과 확장성, 투명성의 문제점들을 가지고 있다. 따라서 본 논문에서는 협업 필터링 방법의 희박성 문제를 보완하고자 개인의 성향을 반영하여 효율이 좋은 웹툰 추천 시스템을 제안하고, 하둡 시스템에서 구현한다.

Improving performance of collaborative recommendation system based on co occurrence (동시출현 빈도에 기반한 협동추천시스템의 성능 향상)

  • Park, Ji-Yeon;Park, Yun-Shim;Yu, Kyeon-Ah
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.333-336
    • /
    • 2000
  • 인터넷이 발전하면서 인터넷을 이용한 여러 서비스들이 급속히 발달하고 있다. 이런 발전에 맞추어 사용자들은 적합한 상품을 선택하는 것이 점점 어려워지고 그에 따라 운영자들은 사용자들의 요구에 맞춰 원하는 상품을 쉽게 찾게 하여 매출을 올리는 노력을 하고 있다. 이런 노력의 일환으로 기존의 사용자 데이터를 바탕으로 사용자의 선호도를 예측하고 사용자의 선호도에 따라 개인에게 적합한 상품을 추천하는 협동적 방식의 추천 시스템이 개발되어 많이 사용되는 추세이다. 본 논문에서는 현재 사용되고 있는 협동추천 시스템의 문제점을 보완할 수 있는 방법을 제시하며 실험을 통해 기존에 비해 성능이 향상되고 있음을 보인다.

  • PDF

Information Filtering for Preference Prediction of Personalized Recommender System (개인화된 추천 시스템의 선호도 계산을 위한 정보 필터링)

  • 곽미라;조동섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.472-474
    • /
    • 2001
  • 웹 기반의 쇼핑몰 사이트의 수가 많아지고 그 이용량이 증가하면서, 차별화된 고객 서비스를 위해 다양한 데이터마이닝 기술들이 적용되고 있다. 특히 고객의 취향에 부합하며 그의 필요를 만족하는 상품을 고객에게 제안하는 추천 시스템을 위해 정보 필터링(information filtering) 알고리즘들이 사용되고 있다. 많은 추천 시스템들은 고객들이 상품에 대해 부여한 선호도 정보를 기반으로, 현재 사용중인 고객에게 그와 취향이 비슷한 고객들이 선택했으며, 아직 그가 선택한 적이 없는 상품을 추천하는 협력적 필터링(collaborative filtering) 방법을 사용하고 있다. 본 연구에서는 보통의 협력적 필터링 방법에 내용기반 필터링(content-based filtering) 방법을 적용하고, 고객의 상품에 대한 선호도 점수를 자동으로 계산할 수 있도록 하는 방법을 제안하여 적용함으로써 협력적 필터링 방법을 개선하였다.

  • PDF

A Study on Personalized Health Care Contents Recommendation Algorithm (사용자 맞춤형 건강 콘텐츠 추천 알고리즘에 대한 연구)

  • Lee, Hanuel;Lee, Hayoung;Han, Ayeon;Sin, Moonsun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.360-361
    • /
    • 2017
  • 본 논문에서는 웹 또는 앱을 통해 제공되는 무한한 정보 중에서 사용자들에게 필요한 건강 관련 정보를 맞춤형으로 제공하기 위해서 사용자 맞춤형 건강 콘텐츠 추천 알고리즘을 설계한다. 그리하여 집단 지성 알고리즘과 의사 결정 나무를 활용하여 사용자 맞춤형 건강 콘텐츠 추천 서비스를 이용하는 사용자들의 자가건강진단 정보를 활용하여 웹상의 URL 정보를 토대로 맞춤형 정보를 분석, 추천하는 알고리즘의 유용성을 제시한다.

  • PDF

Contents Recommendation Scheme Considering User Trust in OSN Environments (OSN 환경에서 사용자 신뢰성을 고려한 콘텐츠 추천 기법)

  • Ko, Geonsik;Kim, Byounghoon;Kim, Dae Yun;Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.37-38
    • /
    • 2016
  • 온라인 소셜 네트워크(OSN)의 활성화로 인해 다양한 정보가 생성됨에 따라 사용자에 적합한 정보를 선택적으로 제공하기 위한 개인 추천 서비스에 대한 연구가 진행되고 있다. 본 논문에서는 온라인 소셜 네트워크에서 사용자 신뢰성을 고려한 콘텐츠 추천 기법을 제안한다. 제안하는 기법은 추천의 정확성을 향상시키기 위해 신뢰성 있는 사용자를 선별한다. 사용자 신뢰성을 기반으로 유사 사용자를 선별하고 이를 기반으로 협업 필터링을 수행한다.

  • PDF