• 제목/요약/키워드: 추천 비율

검색결과 115건 처리시간 0.03초

딥러닝 모델(BERT)과 감정 어휘 사전을 결합한 음원 가사 감정 분석 (Analysis of Emotions in Lyrics by Combining Deep Learning BERT and Emotional Lexicon)

  • 윤경섭;오종민
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.471-474
    • /
    • 2022
  • 음원 스트리밍 서비스 시장은 지속해서 성장해왔다. 그중 최근에 가장 성장세가 돋보이는 서비스는 Spotify와 Youtube music이다. 두 서비스의 추천시스템은 사용자가 좋아할 만한 음악을 계속해서 추천해 줌으로써 많은 사랑을 받고 있다. 추천시스템 성능은 추천에 활용할 수 있는 변수(Feature) 수에 비례한다고 볼 수 있다. 최대한 많은 정보를 알아야 사용자가 원하는 추천이 가능하기 때문이다. 본 논문에서는 기존에 존재하는 감정분류 방법론인 사전기반과 딥러닝 BERT를 사용한 머신기반 방법론을 적절하게 결합하여 장점을 유지하면서 단점을 보완한 하이브리드 감정 분석 모델을 제안함으로써 가사에서 느껴지는 감정 비율을 분석한다. 감정 비율을 음원 가중치 변수로 사용하면 감정 정보를 포함한 고도화된 추천을 기대할 수 있다.

  • PDF

평점 기반 추천시스템을 위한 토픽 모델 협업필터링 (Collaborative Filtering Using Topic Models for Rating Based Recommender Systems)

  • 김광섭;정호경;이현종;김형준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.381-383
    • /
    • 2012
  • 협업필터링은 지금까지 많은 추천시스템 연구에서 비교대상이 되거나 더 좋은 추천시스템 방법론을 개발하기 위해서 응용되고 있다. 일반적으로 협업필터링 기법은 명시적으로 관찰된 사용자들의 행동을 기반하는 방법이다. 본 연구에서는 LDA(Latent Dirichlet Allocation)을 이용해 사용자와 추천 대상이 되는 아이템의 숨겨진 특성을 추출하고, 이를 협업필터링기법에 응용했다. 영화 추천시스템 구축을 위한 실험에서, 사용자의 선호도는 다양한 영화 장르를 선호하는 비율로 나타난다는 가정(사용자기반)과 영화 또한 장르의 비율로 표현이 된다는 가정(아이템기반)을 했다. 이러한 가정을 토대로 사용자 사이와 영화 사이 간의 유사도를 정의하고, 협업필터링에 적용했을 때, 전통적인 협업필터링 기법보다 뛰어난 결과를 얻을 수 있었다.

비지도 학습 기반 초개인화 추천 서비스를 위한 메타데이터 추출의 중요성 고찰 (Consideration upon Importance of Metadata Extraction for a Hyper-Personalized Recommender System on Unsupervised Learning)

  • 백주련;고광호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.19-22
    • /
    • 2022
  • 서비스 관점에서 구축되는 추천 시스템의 성능은 얼마나 효율적인 추천 모델을 적용하여 심층적으로 설계되었는가에 좌우된다고도 볼 수 있다. 특히, 추천 시스템의 초개인화는 세계적인 추세로 1~2년 전부터 구글, 아마존, 알리바바 등의 데이터 플랫폼 강자들이 경쟁적으로 딥 러닝 기반의 알고리즘을 개발, 자신들의 추천 서비스에 적용하고 있다. 본 연구는 갈수록 고도화되는 추천 시스템으로 인해 발생하는 여러 문제들 중 사용자 또는 서비스 정보가 부족하여 계속적으로 발생하고 있는 Cold-start 문제와 추천할 서비스와 사용자는 지속적으로 늘어나지만 실제로 사용자가 소비하게 되는 서비스의 비율은 현저하게 감소하는 데이터 희소성 문제 (Sparsity Problem)에 대한 솔루션을 모색하는 알고리즘 관점에서 연구하고자 한다. 본 논문은 첫 단계로, 적용하는 메타데이터에 따라 추천 결과의 정확성이 얼마나 차이가 나는지를 보이고 딥러닝 비지도학습 방식을 메타데이터 선정 및 추출에 적용하여 실시간으로 변화하는 소비자의 실제 생활 패턴 및 니즈를 예측해야 하는 필요성에 대해서 기술하고자 한다.

  • PDF

개인화 큐레이션을 위한 감성 분류 및 평가 (Emotional Tag and Evaluation Method for Personalized Curation)

  • 임지희;성주원;구형근;옥철영;장두성
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.122-126
    • /
    • 2014
  • 감성은 콘텐츠 구매과정에서 결정적인 요소로 작용하며, 영화 콘텐츠의 탐색/소비 과정에서도 콘텐츠 소비의 새로운 기준이다. 그러므로 본 연구에서는 콘텐츠의 내용과 감성을 반영하기 위한 감성분류체계를 제안하였다. 제안한 감성분류체계를 기반으로 사용자의 취향과 감성에 기반하여 콘텐츠를 분류/추천하여 개인화된 편성을 제공하는 것을 "감성 큐레이션"이라 정의하고, 이를 위한 감성기반 큐레이션 방법론을 기술하고 실험을 통해 추천 효과를 입증하였다. 큐레이션은 기존의 개인화 추천과 달리 고객 취향뿐만이 아닌, 신선함, 다양성을 제공할 수 있어야 하며, 상용 큐레이션 서비스에서는 실제 시청으로 연결되는 비율이 중요하다. 본 연구에서는 큐레이션 성능 평가를 위해 성향인지도, 신선도, 다양성에 기반한 만족도 설문조사 방법과 함께, 콘텐츠의 전체 시청률 대비 큐레이션을 통해 추천되어 증가된 시청률의 확대 비율인 Lift score 라는 새로운 평가 방법을 제안하여 그 효용성을 증명하였다.

  • PDF

사용자 성향 기반 적응형 추천시스템 (An Adaptive Recommendation System based on User Propensity)

  • 김태환;이승화;오제환;이은석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.68-71
    • /
    • 2008
  • 웹 상에 정보가 폭발적으로 증가함에 따라 각 사용자에게 맞는 정보를 선별하여 제공하는 개인화 서비스는 매우 중요한 이슈가 되었다. 기존 추천시스템들은 컨텐츠 기반 필터링과 협업 필터링 기법을 기반으로 한다. 그러나 이러한 방법들은 충분히 수집된 사용자 정보를 필요로 하기 때문에, 적절한 추천이 이루어지기 까지 다소 시간이 소요되는 문제를 가지고 있다. 또한 사용자의 성향이 지나치게 편중되는 경우, 사용자의 취향변화를 반영하여 새로운 상품을 추천하는 것은 어렵다. 실제로 사용자들은 웹 사이트의 방문 목적에 따라 개인화된 상품추천을 원하기도 하고, 많은 사용자들에게 인기 있는 상품을 원하기도 한다. 본 논문에서는 사용자의 행동분석을 기반으로, 협업 필터링을 기반으로 하는 개인화된 추천과 다수의 사용자들에게 공통적으로 인기 있는 상품의 추천 비율을 동적으로 조합하여 최종 추천 상품들을 선별하는 새로운 적응형 추천 시스템을 제안한다. 본 논문에서는 MovieLens의 데이터 셋을 이용하여 기존 추천기법들과 추천결과에 대한 정확도를 비교 실험하였으며, 보다 높은 정확도를 보이는 실험결과를 통해 제안시스템의 유효성을 확인하였다.

날씨 정보를 활용한 음식 메뉴 추천 App 설계 (Design of a Food Menu Recommendation App using Weather Information)

  • 하옥균;옥용훈;김진찬;김용진;나동훈;이욱렬
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.277-278
    • /
    • 2024
  • 일반적으로 한국인은 식사를 위해 음식 메뉴를 고를 때 쉽게 결정하지 못하는 비율이 50% 이상으로 높다고 알려져 있다. 이러한 단순 고민 해결을 위해 다양한 음식이나 맛집을 추천해 주는 모바일 앱이나 서비스가 존재한다. 그러나 이들은 사용자가 평소 많이 검색했던 음식이나 맛집들을 위주로 찾아주거나, 랜덤으로 지정된 카테고리 내의 음식들 중 하나를 추천해주는 방식, 혹은 사용자 리뷰 점수가 높은 음식점을 우선적으로 추천해 주는 방식 등을 사용하고 있다. 따라서 기존의 추천 방식은 음식을 추천에 있어 사용자의 의도나 실질적인 연관성이 매우 낮고 평소 먹던 음식의 종류를 크게 벗어나지 않는 경우가 많아 음식 추천이라는 본래의 취지와는 멀어진다. 본 논문에서는 음식 메뉴를 선정하는데 있어 실질적인 영향을 주는 환경 요소인 계절, 기후 등의 날씨 정보를 기반으로 생성형 AI를 통해 적절한 음식을 추천하고 해당 음식을 판매하는 음식점과 그 위치를 알려주는 앱을 개발한다. 개발하는 앱은 바쁜 직장인들이나 매 끼니를 고민하는 학생 등의 메뉴 고민을 해결하는데 도움을 줄 수 있으며, 각종 배달 서비스 앱의 음식 추천 기능의 고도화에 활용될 수 있다.

  • PDF

ICT 및 빅데이터기반 맞춤형 음식메뉴 추천시스템 연구 (A Study on the Customized Food Menu Recommendation System Based on ICT and Big Data)

  • 유희수;리만팅
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.339-346
    • /
    • 2021
  • 본 연구에서는 더 나은 음식 주문 메커니즘을 제공하고 글로벌 고객의 맞춤형 음식 주문에 대한 레시피 성분 비율을 실시간으로 선택할 수 있는 인터페이스를 구현하였다. 각 레시피 재료의 기본 비율을 보여주는 주문 시스템 화면에 선택 메뉴를 배치하여 글로벌 고객에게 적절한 음식을 제공하고, 단순히 음식 메뉴를 선택하고 주문하는 시스템 없이 레시피 그래프를 구성하여 맞춤형 레시피 재료 구성 비율을 제공하는 알고리즘을 연구하였다. 상호 작용을 가능하게 하여 사용자가 음식 메뉴 주문 장치에서 다양한 레시피 재료의 비율 조정을 통해 맞춤형 서비스를 제공한다.

협력 필터링 기반의 추천 시스템을 위한 이웃 선정 전략 (A Strategy for Neighborhood Selection in Collaborative Filtering-based Recommender Systems)

  • 이수정
    • 정보과학회 논문지
    • /
    • 제42권11호
    • /
    • pp.1380-1385
    • /
    • 2015
  • 협력 필터링은 가장 성공적으로 사용되는 추천 시스템의 방법으로서, 서적, 음악 등 다방면의 상업 시스템에서 활용되어왔다. 이러한 방법의 핵심은 사용자에게 가장 적합한 추천인들을 선정하는 것인데, 이를 위하여 다양한 유사도 측정 방법이 연구되었다. 본 연구에서는 추천 성능의 향상을 위하여 기존의 유사도 값에 근거한 추천인 선정의 문제점을 파악하고 이의 개선책으로서 유사도 값과 공통평가항목수의 비율을 기준으로 하여 가변적으로 추천인을 결정하는 방법을 제시한다. 실험을 통하여 다양한 기준값에 대해 성능 변화를 관찰한 결과, 예측 성능과 추천 성능의 두 측면 모두에서 제안 방법이 매우 향상된 결과를 가져왔으며, 특히 주어진 기준값을 만족하는 추천인 수가 적을 때에도 향상된 성능 결과를 보였다.

시청시간패턴을 활용한 TV 프로그램 추천 시스템 (TV Program Recommender System Using Viewing Time Patterns)

  • 방한별;이혜우;이지형
    • 한국지능시스템학회논문지
    • /
    • 제25권5호
    • /
    • pp.431-436
    • /
    • 2015
  • 오늘날 수많은 TV 프로그램들이 방송됨에 따라 TV 프로그램을 추천해주는 추천 시스템에 관한 연구가 시작되었으며, 추천의 정확도를 더욱 높이기 위한 연구가 현재도 활발히 진행 중이다. 추천 시스템은 장르, 줄거리 등과 같은 메타데이터를 사용하여 TV 프로그램을 추천하거나, TV 프로그램에 대한 시청자의 선호도를 계산하여 TV 프로그램을 추천한다. 본 논문에서는 추천의 정확도를 높이고자 시청비율, 종료시간과의 관계, 최근시청이력 등 시청시간의 여러 패턴을 추가로 사용하여 선호도 계산에 활용하는 협업 필터링 TV 프로그램 추천 시스템을 제안한다. 연구의 효용성을 검증하기 위해 시청시간패턴의 모든 요소를 선호도 계산에 활용한 경우와 단순히 시청자가 가장 많이 시청하는 채널을 추천하는 경우의 협업 필터링 추천 결과를 비교하였다. 실험을 통해 시청시간패턴 모든 요소를 같이 선호도 계산에 활용한 경우의 성능이 증가한 것을 확인할 수 있었다.

친환경 농산물의 선택결정요인이 소비자신뢰와 추천의도에 미치는 영향 (This Effect of Eco-friendly Agricultural Product Selection Criteria on the Degree of Consumer Trust and Recommendation Intention)

  • 이선호
    • 한국조리학회지
    • /
    • 제22권4호
    • /
    • pp.181-191
    • /
    • 2016
  • 본 연구에서는 친환경농산물 선택결정요인이 소비자신뢰와 추천의도에 미치는 영향요인들과 그 요인을 이용한 앞으로의 활용방안을 제시하고자 한다. 총 220부의 설문지를 배포하여 불성실하게 응답한 10부의 설문지를 제외한 나머지 210부의 유효한 설문지를 실증연구에 사용되었다. 조사연구의 목적을 달성하기 위하여 통계프로그램 SPSS 18.0을 활용하여 빈도분석, 요인분석 및 신뢰도분석, 상관관계분석, 회귀분석을 실시하였다. 분석결과를 보면 선택결정요인에 대한 측정항목의 탐색적 요인분석 결과, 3개 요인으로 KMO 값은 0.735, 총분산비율 79.373%, 소비자신뢰에 대한 요인분석은 총분산비율 75.431%, KMO 값은 0.695로 나타났다. 추천의도에 대한 요인분석은 총분산설명력 68.428%, KMO 값은 0.694로 나타났다. 변수들 간의 상관관계가 다른 변수에 의해 설명되는 정도가 좋게 분석되었고, 유의확률이 0.000으로 나타나 전반적으로 변수들 간의 상관관계는 유의적이다. 따라서 선택결정요인에 따른 소비자신뢰는 추천의도에 미치는 영향에 관한 가설은 채택되었다.