음원 스트리밍 서비스 시장은 지속해서 성장해왔다. 그중 최근에 가장 성장세가 돋보이는 서비스는 Spotify와 Youtube music이다. 두 서비스의 추천시스템은 사용자가 좋아할 만한 음악을 계속해서 추천해 줌으로써 많은 사랑을 받고 있다. 추천시스템 성능은 추천에 활용할 수 있는 변수(Feature) 수에 비례한다고 볼 수 있다. 최대한 많은 정보를 알아야 사용자가 원하는 추천이 가능하기 때문이다. 본 논문에서는 기존에 존재하는 감정분류 방법론인 사전기반과 딥러닝 BERT를 사용한 머신기반 방법론을 적절하게 결합하여 장점을 유지하면서 단점을 보완한 하이브리드 감정 분석 모델을 제안함으로써 가사에서 느껴지는 감정 비율을 분석한다. 감정 비율을 음원 가중치 변수로 사용하면 감정 정보를 포함한 고도화된 추천을 기대할 수 있다.
협업필터링은 지금까지 많은 추천시스템 연구에서 비교대상이 되거나 더 좋은 추천시스템 방법론을 개발하기 위해서 응용되고 있다. 일반적으로 협업필터링 기법은 명시적으로 관찰된 사용자들의 행동을 기반하는 방법이다. 본 연구에서는 LDA(Latent Dirichlet Allocation)을 이용해 사용자와 추천 대상이 되는 아이템의 숨겨진 특성을 추출하고, 이를 협업필터링기법에 응용했다. 영화 추천시스템 구축을 위한 실험에서, 사용자의 선호도는 다양한 영화 장르를 선호하는 비율로 나타난다는 가정(사용자기반)과 영화 또한 장르의 비율로 표현이 된다는 가정(아이템기반)을 했다. 이러한 가정을 토대로 사용자 사이와 영화 사이 간의 유사도를 정의하고, 협업필터링에 적용했을 때, 전통적인 협업필터링 기법보다 뛰어난 결과를 얻을 수 있었다.
서비스 관점에서 구축되는 추천 시스템의 성능은 얼마나 효율적인 추천 모델을 적용하여 심층적으로 설계되었는가에 좌우된다고도 볼 수 있다. 특히, 추천 시스템의 초개인화는 세계적인 추세로 1~2년 전부터 구글, 아마존, 알리바바 등의 데이터 플랫폼 강자들이 경쟁적으로 딥 러닝 기반의 알고리즘을 개발, 자신들의 추천 서비스에 적용하고 있다. 본 연구는 갈수록 고도화되는 추천 시스템으로 인해 발생하는 여러 문제들 중 사용자 또는 서비스 정보가 부족하여 계속적으로 발생하고 있는 Cold-start 문제와 추천할 서비스와 사용자는 지속적으로 늘어나지만 실제로 사용자가 소비하게 되는 서비스의 비율은 현저하게 감소하는 데이터 희소성 문제 (Sparsity Problem)에 대한 솔루션을 모색하는 알고리즘 관점에서 연구하고자 한다. 본 논문은 첫 단계로, 적용하는 메타데이터에 따라 추천 결과의 정확성이 얼마나 차이가 나는지를 보이고 딥러닝 비지도학습 방식을 메타데이터 선정 및 추출에 적용하여 실시간으로 변화하는 소비자의 실제 생활 패턴 및 니즈를 예측해야 하는 필요성에 대해서 기술하고자 한다.
감성은 콘텐츠 구매과정에서 결정적인 요소로 작용하며, 영화 콘텐츠의 탐색/소비 과정에서도 콘텐츠 소비의 새로운 기준이다. 그러므로 본 연구에서는 콘텐츠의 내용과 감성을 반영하기 위한 감성분류체계를 제안하였다. 제안한 감성분류체계를 기반으로 사용자의 취향과 감성에 기반하여 콘텐츠를 분류/추천하여 개인화된 편성을 제공하는 것을 "감성 큐레이션"이라 정의하고, 이를 위한 감성기반 큐레이션 방법론을 기술하고 실험을 통해 추천 효과를 입증하였다. 큐레이션은 기존의 개인화 추천과 달리 고객 취향뿐만이 아닌, 신선함, 다양성을 제공할 수 있어야 하며, 상용 큐레이션 서비스에서는 실제 시청으로 연결되는 비율이 중요하다. 본 연구에서는 큐레이션 성능 평가를 위해 성향인지도, 신선도, 다양성에 기반한 만족도 설문조사 방법과 함께, 콘텐츠의 전체 시청률 대비 큐레이션을 통해 추천되어 증가된 시청률의 확대 비율인 Lift score 라는 새로운 평가 방법을 제안하여 그 효용성을 증명하였다.
웹 상에 정보가 폭발적으로 증가함에 따라 각 사용자에게 맞는 정보를 선별하여 제공하는 개인화 서비스는 매우 중요한 이슈가 되었다. 기존 추천시스템들은 컨텐츠 기반 필터링과 협업 필터링 기법을 기반으로 한다. 그러나 이러한 방법들은 충분히 수집된 사용자 정보를 필요로 하기 때문에, 적절한 추천이 이루어지기 까지 다소 시간이 소요되는 문제를 가지고 있다. 또한 사용자의 성향이 지나치게 편중되는 경우, 사용자의 취향변화를 반영하여 새로운 상품을 추천하는 것은 어렵다. 실제로 사용자들은 웹 사이트의 방문 목적에 따라 개인화된 상품추천을 원하기도 하고, 많은 사용자들에게 인기 있는 상품을 원하기도 한다. 본 논문에서는 사용자의 행동분석을 기반으로, 협업 필터링을 기반으로 하는 개인화된 추천과 다수의 사용자들에게 공통적으로 인기 있는 상품의 추천 비율을 동적으로 조합하여 최종 추천 상품들을 선별하는 새로운 적응형 추천 시스템을 제안한다. 본 논문에서는 MovieLens의 데이터 셋을 이용하여 기존 추천기법들과 추천결과에 대한 정확도를 비교 실험하였으며, 보다 높은 정확도를 보이는 실험결과를 통해 제안시스템의 유효성을 확인하였다.
일반적으로 한국인은 식사를 위해 음식 메뉴를 고를 때 쉽게 결정하지 못하는 비율이 50% 이상으로 높다고 알려져 있다. 이러한 단순 고민 해결을 위해 다양한 음식이나 맛집을 추천해 주는 모바일 앱이나 서비스가 존재한다. 그러나 이들은 사용자가 평소 많이 검색했던 음식이나 맛집들을 위주로 찾아주거나, 랜덤으로 지정된 카테고리 내의 음식들 중 하나를 추천해주는 방식, 혹은 사용자 리뷰 점수가 높은 음식점을 우선적으로 추천해 주는 방식 등을 사용하고 있다. 따라서 기존의 추천 방식은 음식을 추천에 있어 사용자의 의도나 실질적인 연관성이 매우 낮고 평소 먹던 음식의 종류를 크게 벗어나지 않는 경우가 많아 음식 추천이라는 본래의 취지와는 멀어진다. 본 논문에서는 음식 메뉴를 선정하는데 있어 실질적인 영향을 주는 환경 요소인 계절, 기후 등의 날씨 정보를 기반으로 생성형 AI를 통해 적절한 음식을 추천하고 해당 음식을 판매하는 음식점과 그 위치를 알려주는 앱을 개발한다. 개발하는 앱은 바쁜 직장인들이나 매 끼니를 고민하는 학생 등의 메뉴 고민을 해결하는데 도움을 줄 수 있으며, 각종 배달 서비스 앱의 음식 추천 기능의 고도화에 활용될 수 있다.
본 연구에서는 더 나은 음식 주문 메커니즘을 제공하고 글로벌 고객의 맞춤형 음식 주문에 대한 레시피 성분 비율을 실시간으로 선택할 수 있는 인터페이스를 구현하였다. 각 레시피 재료의 기본 비율을 보여주는 주문 시스템 화면에 선택 메뉴를 배치하여 글로벌 고객에게 적절한 음식을 제공하고, 단순히 음식 메뉴를 선택하고 주문하는 시스템 없이 레시피 그래프를 구성하여 맞춤형 레시피 재료 구성 비율을 제공하는 알고리즘을 연구하였다. 상호 작용을 가능하게 하여 사용자가 음식 메뉴 주문 장치에서 다양한 레시피 재료의 비율 조정을 통해 맞춤형 서비스를 제공한다.
협력 필터링은 가장 성공적으로 사용되는 추천 시스템의 방법으로서, 서적, 음악 등 다방면의 상업 시스템에서 활용되어왔다. 이러한 방법의 핵심은 사용자에게 가장 적합한 추천인들을 선정하는 것인데, 이를 위하여 다양한 유사도 측정 방법이 연구되었다. 본 연구에서는 추천 성능의 향상을 위하여 기존의 유사도 값에 근거한 추천인 선정의 문제점을 파악하고 이의 개선책으로서 유사도 값과 공통평가항목수의 비율을 기준으로 하여 가변적으로 추천인을 결정하는 방법을 제시한다. 실험을 통하여 다양한 기준값에 대해 성능 변화를 관찰한 결과, 예측 성능과 추천 성능의 두 측면 모두에서 제안 방법이 매우 향상된 결과를 가져왔으며, 특히 주어진 기준값을 만족하는 추천인 수가 적을 때에도 향상된 성능 결과를 보였다.
오늘날 수많은 TV 프로그램들이 방송됨에 따라 TV 프로그램을 추천해주는 추천 시스템에 관한 연구가 시작되었으며, 추천의 정확도를 더욱 높이기 위한 연구가 현재도 활발히 진행 중이다. 추천 시스템은 장르, 줄거리 등과 같은 메타데이터를 사용하여 TV 프로그램을 추천하거나, TV 프로그램에 대한 시청자의 선호도를 계산하여 TV 프로그램을 추천한다. 본 논문에서는 추천의 정확도를 높이고자 시청비율, 종료시간과의 관계, 최근시청이력 등 시청시간의 여러 패턴을 추가로 사용하여 선호도 계산에 활용하는 협업 필터링 TV 프로그램 추천 시스템을 제안한다. 연구의 효용성을 검증하기 위해 시청시간패턴의 모든 요소를 선호도 계산에 활용한 경우와 단순히 시청자가 가장 많이 시청하는 채널을 추천하는 경우의 협업 필터링 추천 결과를 비교하였다. 실험을 통해 시청시간패턴 모든 요소를 같이 선호도 계산에 활용한 경우의 성능이 증가한 것을 확인할 수 있었다.
본 연구에서는 친환경농산물 선택결정요인이 소비자신뢰와 추천의도에 미치는 영향요인들과 그 요인을 이용한 앞으로의 활용방안을 제시하고자 한다. 총 220부의 설문지를 배포하여 불성실하게 응답한 10부의 설문지를 제외한 나머지 210부의 유효한 설문지를 실증연구에 사용되었다. 조사연구의 목적을 달성하기 위하여 통계프로그램 SPSS 18.0을 활용하여 빈도분석, 요인분석 및 신뢰도분석, 상관관계분석, 회귀분석을 실시하였다. 분석결과를 보면 선택결정요인에 대한 측정항목의 탐색적 요인분석 결과, 3개 요인으로 KMO 값은 0.735, 총분산비율 79.373%, 소비자신뢰에 대한 요인분석은 총분산비율 75.431%, KMO 값은 0.695로 나타났다. 추천의도에 대한 요인분석은 총분산설명력 68.428%, KMO 값은 0.694로 나타났다. 변수들 간의 상관관계가 다른 변수에 의해 설명되는 정도가 좋게 분석되었고, 유의확률이 0.000으로 나타나 전반적으로 변수들 간의 상관관계는 유의적이다. 따라서 선택결정요인에 따른 소비자신뢰는 추천의도에 미치는 영향에 관한 가설은 채택되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.