• Title/Summary/Keyword: 추진제어시스템

Search Result 623, Processing Time 0.029 seconds

Hydrogen Peroxide Monopropellant Thruster for KSLV-II Reaction Control System (한국형발사체 자세제어시스템을 위한 과산화수소 단일추진제 추력기)

  • Oh, Sanggwan;Kang, Shinjae;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.335-343
    • /
    • 2019
  • The third stage of the KSLV-II is equipped with the reaction control system that performs three axis-control during non-thrust coasting phase and performs a roll axis control during thrust phase. Toxic propellants such as hydrazine have been used for conventional rocket propulsions, however, recently, more studies have been conducted on the use of non-toxic eco-friendly propellants such as ADN and HAN. Especially, hydrogen peroxide has received a growing focus as an emerging propellant. It is considered an alternative of the toxic propellants because of economic advantage in producing the system, conducting operation test, and evaluation of the test result. In this paper, we describes the design, prototype, testing and evaluation of the test results with the 50 N-level hydrogen peroxide monopropellant thruster system which is currently under development.

A Study on The Synchronous Control of Dual Electric Propulsion System Based on the Coupling Structure (커플링구조에 기초한 전기추진시스템의 동기제어에 관한 연구)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.349-356
    • /
    • 2018
  • In this study, the synchronous control system is designed to restrain the speed difference generated between two propellers, namely, synchronous error in a dual electric propulsion system of unmanned surface vehicle, fish finder boat, etc. The control system based on coupling structure is composed of pre-filters and speed controllers for each propulsion system and a synchronous controller cross-coupled between two propulsion systems. The pre-filter and speed controller are designed in order that the propulsion system may follow the speed reference without overshoot and input saturation. And the synchronous controller is designed in consideration of damping and quickness of the synchronous controller system after analyzing effect of the skew disturbance and mismatched dynamic characteristics on synchronous error. Finally, the simulation results show that the designed control system is effective for elimination of synchronous error.

The Synchronous Control System Design of a Dual Electric Propulsion System for Small Boats (소형 선박용 듀얼 전기추진시스템의 동기제어시스템 설계)

  • Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2017
  • Recently, electric propulsion systems are used for unmanned surface vehicle, fish finder boat, etc. Some of these propulsion systems can be constructed of two electric motors and propellers for advanced impellent force. In this case, the speed difference generated between two propellers, namely, the synchronous error has a bad influence on the energy efficiency and course error. In this study, a synchronous control system is designed to restrain synchronous error caused by disturbance and mismatched dynamic characteristics. The control system is composed of the reference model, pre-filters, speed controllers, and synchronous controllers. The reference model is used for calculating the decoupled synchronous error and control input for each propulsion system. The pre-filters and speed controllers are designed in order that the propulsion system may follow the reference signal without overshoot and input saturation. And the synchronous controllers are designed from the viewpoint of stable and quick synchronization through root locus mothed approach. Finally, the simulation results show that the designed control system is effective for the disturbance.

지능형생산시스템(IMS) 기술 개발을 위한 국제 IMS 프로그램과 국내 추진 현황

  • 이영수;최병욱;이현정
    • ICROS
    • /
    • v.3 no.4
    • /
    • pp.33-39
    • /
    • 1997
  • 본 글에서는 21세기를 대비한 차세대생산시스템으로 일컬어지는 지능형생산시스템(IMS: Intelligent Manufacturing System)의 기술 개발을 위해 국제공동연구로 진행되고 있는 "국제 IMS 프로그램"을 소개하고 우리나라의 추진현황에 대해서도 설명한다. 제 2절에서는 국제 IMS 프로그램의 개요로서 추진배경, IMS의 목표, 참가국 및 추진체계, 자금운영 방법 등에 대해 설명한다. 제 3절에서는 국제 IMS 프로그램에서 수행하는 프로젝트들을 소개하며, 국내의 IMS 추진전략 및 주요활동 등을 제 4절에서 설명한다.

  • PDF

Results Analysis for On-orbit Operation of KOMPSAT-1 Propulsion System (다목적실용위성 1호 추진시스템 궤도운용 결과 분석)

  • 김정수;한조영;진익민
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.107-113
    • /
    • 2000
  • Design configuration and performance requirements for KOMPSAT-1 propulsion system were described. Operational results of the propulsion system obtained through the satellite Launch and Early Operation Phase were scrutinized. Performance characteristics of the thrusters which are employed for spacecraft attitude control and the corresponding propellant depletion rate were analysed according to satellite operation modes. Additionally, propellant leakproof and thermal control capability were checked out from the view point of system verification. Propellant depletion rates calculated by PVT method in $\Delta$V maneuvering and each attitude control mode produce the very meaningful results for the prediction of total propellant consumption up to the end of satellite mission life.

  • PDF

Development of SPMSM Drive System for Electric Propulsion Boat (전기 보트 추진용 SPMSM 구동 시스템 개발)

  • Kim, Do-Hyun;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.392-393
    • /
    • 2019
  • 본 논문에서는 전기 보트 추진을 위한 SPMSM(Surface mounted Permanent Magnet Synchronous Motor) 구동 시스템을 개발하였다. 전차원 폐루프 관측기를 이용하여 외란 토크 관측기를 구성하고, 관측된 외란 성분을 속도 제어기 출력에 보상하여 속도 제어 성능을 향상시켰다. 리튬이온 배터리, 인버터 및 1kW SPMSM으로 구성된 전기 보트 추진 시스템을 이용한 구동 실험을 통해 추진용 전동기의 속도 제어 특성을 확인하였다.

  • PDF

Main Control System of Propulsion System Test Complex(PSTC) for KSLV-II (한국형발사체 추진기관시스템 시험설비(PSTC) 통합제어시스템)

  • Kim, Dongki;Lee, Jungho;Cho, Kiejoo;Shim, Juyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1205-1211
    • /
    • 2017
  • The Propulsion System Test Complex(PSTC) was constructed for the verification test of each stage's propulsion system of KSLV-II. Main Control System(MCS) is the system to operate the onboard equipment and the ground equipment of the PSTC simultaneously. This paper describes the critical design, the development status, and test results of Main Control System. The MCS will be used for the interface connection between ground control systems and onboard equipment. Test sequence and operation process of the Work Manager will be conducted by MCS.

  • PDF

Thruster system for attitude control of launch vehicles (발사체 자세 제어용 추력기 시스템)

  • Shin, Dong-Sun;Han, Sang-Yeop;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.7-10
    • /
    • 2006
  • In order to inject satellites into a target orbit, launch vehicles should have a precise attitude and control system capable of controlling three axises of pitch, yaw and roll. For launch vehicles, there are two types of attitude control system currently in popular use; the first one is a cold gas method, and the other is a liquid propulsion system using a single and dual property propellant. The purpose of this paper is to analyze the characteristics of thrust control system using said propellant, thereby providing for a rationale for its application to the upper stages of launch vehicles, in terms of the simplicity of the system, economics of structure and operation.

  • PDF

A Study on the Design of Controller for Speed Control of the Induction Motor in the Train Propulsion System-2 (열차추진시스템에서 유도전동기의 속도제어를 위한 제어기 설계에 대한 연구-2)

  • Lee, Jung-Ho;Kim, Min-Seok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.166-172
    • /
    • 2010
  • Currently, vector control is used for speed control of trains because induction motor has high performance is installed in Electric railroad systems. Also, control of the induction motor is possible through various methods by developing inverters and control theory. Presently, rolling stocks which use the induction motor are possible to brake trains by using AC motor. Therefore model of motor block and induction motor is needed to adapt various methods. There is Variable Voltage Variable Frequency (VVVF) as the control method of the induction motor. The torque and speed is controlled in the VVVF. The propulsion system model in the electric railroad has many sub-systems. So, the analysis of performance of the speed control is very complex. In this paper, simulation models are suggested by using Matlab/Simulink in the speed control characteristic. On the basis of the simulation models, the response to disturbance input is analyzed about the load. Also, the current, speed and flux control model are proposed to analyze the speed control characteristic in the train propulsion system.

Design of Levitation and Propulsion Controller for Magnetic Levitated Logistic Transportation System (자기부상 물류이송시스템의 부상 및 추진제어기 설계)

  • Choi, Dae-Gyu;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.106-112
    • /
    • 2017
  • In the paper, we propose a levitation and a propulsion controller for the magnetic levitation logistic transportation system. The levitation controller is designed considering the mutual influence of the electromagnets to minimize roll and pitch movements. In order to solve the structural disadvantages of the magnetic levitation transportation system, we improve the problem of the existing controller by applying the exponential filter to the reference input. DSP-based control hardware is developed and the levitation control method is verified by levitation experiments to the air gap goal. The propulsion controller uses the space vector voltage modulation method. The propulsion controller is designed to follow the position and velocity profile by detecting the absolute position from the bar code information attached to the rail. The position control result shows satisfactory performance through the propulsion control reciprocating motion experiment.