• 제목/요약/키워드: 추론 유형

검색결과 264건 처리시간 0.021초

관계 추론 심층 신경망 모델의 성능개선 연구 (A Study on Improving Performance of the Deep Neural Network Model for Relational Reasoning)

  • 이현옥;임희석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권12호
    • /
    • pp.485-496
    • /
    • 2018
  • 지금까지 인공지능의 한 분야인 딥러닝 방법은 구조화되지 않은 데이터로부터 문제를 해결하는 놀라울만한 성과를 이루어왔지만, 인간처럼 여러 상황들을 종합적으로 판단, 그것들의 연관성을 추론하고, 그 다음 상황을 예측하는 수준의 지능을 갖는데 도달하지 못하였다. 최근 발표된 복잡한 관계 추론을 수행하는 심층 신경망은 인공지능이 인간의 핵심 지적 능력인 관계 추론을 보유할 수 있다는 것을 증명하였다. 본 논문에서는 관계 추론 심층 신경망 중에서 Relation Networks (RN)의 성능을 분석 및 관찰해 보고자 Sort-of-CLEVR 데이터 셋을 사용한 시각적 질의응답과 bAbI task를 사용한 텍스트 기반 질의응답 두 유형의 RN 기반 심층 신경망 모델을 구축하여 baseline 모델과의 비교를 통한 성능검증을 하였다. 또한 모델의 성능을 극대화하기 위하여 하이퍼 파라미터 튜닝 등 다양각도의 성능개선 실험으로 관계 추론을 위한 RN 기반 심층 신경망 모델의 성능개선 방법을 제안하였다. 제안한 성능개선 방법은 시각적 질의응답 모델과 텍스트 기반 질의응답 모델에 적용하여 그 효과를 검증하였고, 기존의 RN 모델에서 사용해보지 않았던 Dialog-based LL 데이터 셋을 사용하여 새로운 도메인에서의 제안한 성능개선 방법의 효과를 다시 한 번 검증하였다. 실험 결과 두 유형의 RN 모델 모두에서 초기 학습률이 모델의 성능을 결정하는 핵심 요인임을 알 수 있었고, 제안한 random search 방법에 의해 찾은 최적의 초기 학습률 설정이 모델의 성능을 최고 99.8%까지 향상 시킬 수 있다는 것을 확인하였다.

생물학자의 탐구에 기반한 메커니즘 추론 모델 개발 (Development of a Mechanistic Reasoning Model Based on Biologist's Inquiries)

  • 정선희;양일호
    • 한국과학교육학회지
    • /
    • 제38권5호
    • /
    • pp.599-610
    • /
    • 2018
  • 이 연구의 목적은 파브르의 탐구 과정에서 나타난 메커니즘 추론을 분석하고, 분석 결과에 기반하여 메커니즘 추론 모델을 개발하는 것이다. 이를 위해 Russ et al.(2008)의 분석틀을 수정 보완한 메커니즘 추론 분석틀로 "파브르 곤충기 1~10" 가운데 추론요소가 등장하는 30개의 챕터를 분석하였다. 분석결과 첫째, 파브르의 탐구 과정에서 나타난 메커니즘 추론의 하위 과정 요소는 선지식확인, 대상속성확인, 시작조건확인, 활동확인 등의 과정이 반복적으로 일어났다. 뿐만 아니라 이 메커니즘 추론의 과정 요소들의 순서는 탐구 주제, 의문 유형, 선지식이나 주어진 상황 등에 따라 다르게 나타났으며, 비선형적이고 반복적인 형태로 나타났다. 둘째, 메커니즘 추론의 과정 요소가 나타난 순서에 기반하여 메커니즘 추론 모델을 개발하였다. 파브르의 탐구 과정 분석을 통해 제안되는 메커니즘 추론 모델은 실체확인형 메커니즘 추론 모델(MIE), 활동확인형 메커니즘 추론 모델(MIA), 실체 속성확인형 메커니즘 추론 모델(MIP) 3가지였다. 이러한 결과는 인과 메커니즘을 밝히고자 하는 탐구를 수행하는 학생들에게 교사가 Why 뿐만 아니라 How, If, What과 같은 다양한 발문을 통해 탐구를 진행하도록 유도할 수 있음을 시사해준다. 또한 교사는 자연 현상의 기저에 존재하는 여러 실체들을 인식하는 메커니즘적 이해가 요구되며 학생들에게 다양한 가설을 생성하도록 하는 기회를 제공해야함을 시사해 준다.

다중 홉 다중 작업 질문 응답을 위한 계층적 그래프 추론 (Hierarchical Graph Reasoning for Multi-hop, Multi-task Question Answering)

  • 이상의;이기호;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.984-987
    • /
    • 2020
  • 최근 오픈 도메인 자연어 질문 응답 분야에서는 폭넓은 다중 문서들을 토대로 다중 홉 추론과 동시에 서로 다른 수준의 여러 문제들을 한꺼번에 해결해야 하는 다중 작업 질문 응답에 관한 관심이 높다. 본 논문에서는 이러한 다중 홉 추론과 다중 작업을 요구하는 복잡 질문들에 효과적으로 응답하기 위해, 계층적 그래프 기반의 새로운 심층 신경망 모델을 제안한다. 제안 모델에서는 계층적 그래프와 그래프 신경망을 이용해 다중 문서들로부터 서로 다른 수준의 맥락 정보를 얻어낸 후, 이들을 활용하여 뒷받침 문장들, 답변 영역, 응답 유형 등을 동시에 구해야 하는 다중 작업 문제에 관한 답들을 예측해낸다. 본 논문에서는 오픈 도메인 자연어 질문 응답 데이터 집합인 HotpotQA를 이용한 실험들을 통해, 제안 모델의 긍정적 효과를 입증한다.

함수적 사고 기반 수업이 초등학교 6학년 학생들의 대수적 추론 능력 및 함수적 사고 수준에 미치는 영향 (The Influence of the Functional Thinking Based-Teaching on Algebraic Reasoning and Functional Thinking Level of Sixth Grade Elementary School Students)

  • 최은미;오영열
    • 한국초등수학교육학회지
    • /
    • 제20권4호
    • /
    • pp.655-676
    • /
    • 2016
  • 본 연구는 대수적 사고 중 하나인 함수적 사고에 기반 한 수학 수업이 6학년 학생들의 대수적 추론 능력 및 함수적 사고 수준에 미치는 영향을 알아보는데 목적이 있다. 이에 본 연구에서는 교육과정 및 선행연구 분석을 통한 12차시의 함수적 사고 기반 수업을 개발하여 실시하였다. 그 결과, 함수적 사고 기반 수업은 전통적인 교과서 중심의 수업에 비해 대수적 추론 능력에 있어 통계적으로 유의미한 차이를 보여주었으며, 대수적 추론 능력의 하위요소인 일반화된 산술로서의 대수적 추론 및 함수적 사고로서의 대수적 추론 능력 향상에도 도움이 되었다. 또한, 함수적 사고 기반 수업은 5가지 유형별 학생들의 함수적 사고 수준 변화에도 긍정적인 영향을 주었다.

사례기반추론과 규칙기반추론을 이용한 e-쇼핑몰의 상품추천 시스템 (Recommending System of Products on e-shopping malls based on CBR and RBR)

  • 이건호;이동훈
    • 정보처리학회논문지D
    • /
    • 제11D권5호
    • /
    • pp.1189-1196
    • /
    • 2004
  • e쇼핑몰 경영자들은 고객들의 다양한 제품 구매 욕구를 충족시키기 위한 효율적 시스템에 많은 관심을 가지고 있다. 인터넷 쇼핑몰 운영에 있어 고객들의 개인적 구매 특성 및 취향을 파악하여 고객들을 효과적으로 관리하는데 많은 어려움이 있다. 상품 추천의 과정이 기획된 소수의 특정 상품을 고객의 유형 및 특성들의 고려 없이 공급자 중심으로 이루어져 고객관리의 문제점으로 지적되고 있다. 본 연구에서는 고객위주의 추천을 위해 규칙기반추론(Rule-Based Reasoning, RBR)과 사례기반추론(Case-Based Reasoning, CBR)을 하여 고객의 취향 및 구매 특성에 따른 추천방법을 제시한다. 기존의 제품 판매정보와 고객정보를 이용해 생성한 규칙베이스와 사례베이스의 고객특성과 입력된 고객특성의 유사도를 평가해서 고객의 취향에 따라 추천하도록 한다. 생성된 규칙과 사례기반의 추론으로 기존의 정보를 효과적으로 사용하고 또한 고객 및 시장 상황의 변화를 인식하고 지속적인 학습을 수행하여 지능적 추천이 이루어진다.

ChatGPT 및 거대언어모델의 추론 능력 향상을 위한 프롬프트 엔지니어링 방법론 및 연구 현황 분석 (Analysis of Prompt Engineering Methodologies and Research Status to Improve Inference Capability of ChatGPT and Other Large Language Models)

  • 박상언;강주영
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.287-308
    • /
    • 2023
  • ChatGPT는 2022년 11월에 서비스를 시작한 후 급격하게 사용자 수가 늘어나며 인공지능의 역사에서 큰 전환점을 가져올 정도로 사회 곳곳에 많은 영향을 미치고 있다. 특히 ChatGPT와 같은 거대언어모델의 추론 능력은 프롬프트 엔지니어링 기법을 통해 빠른 속도로 그 성능이 발전하고 있다. 인공지능을 워크플로우에 도입하려고 하는 기업이나 활용하려고 하는 개인에게 이와 같은 추론 능력은 중요한 요소로 고려될 수 있다. 본 논문에서는 거대언어모델에서 추론을 가능하게 한 문맥내 학습에 대한 이해를 시작으로 하여 프롬프트 엔지니어링의 개념과 추론 유형 및 벤치마크 데이터에 대해 설명하고, 이를 기반으로 하여 최근 거대언어모델의 추론 성능을 급격히 향상시킨 프롬프트 엔지니어링 기법들에 대해 조사하고 발전과정과 기법들 간의 연관성에 대해 상세히 알아보고자 한다.

한국어 자연어생성에 적합한 사전훈련 언어모델 특성 연구 (A Study of Pre-trained Language Models for Korean Language Generation)

  • 송민채;신경식
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.309-328
    • /
    • 2022
  • 본 연구는 자연어처리의 분석목적과 추론데이터 성격에 적합한 한국어 사전훈련 언어모델의 특성을 실증분석했다. 이를 위해 자연어생성이 가능한 대표적 사전훈련 언어모델인 BART와 GPT 모델을 실험에 사용했다. 구체적으로 한국어 텍스트를 BART와 GPT 모델에 학습한 사전훈련 언어모델을 사용해 문서요약 생성 성능을 비교했다. 다음으로 추론데이터의 특성에 따라 언어모델의 성능이 어떻게 달라지는지 확인하기 위해 6가지 정보전달성과 4가지 창작물 유형의 한국어 텍스트 문서에 적용했다. 그 결과, 모든 문서유형에서 인코더와 디코더가 모두 있는 BART의 구조가 디코더만 있는 GPT 모델보다 더 높은 성능을 보였다. 추론데이터의 특성이 사전훈련 언어모델의 성능에 미치는 영향을 살펴본 결과, KoGPT는 데이터의 길이에 성능이 비례한 것으로 나타났다. 그러나 길이가 가장 긴 문서에 대해서도 KoGPT보다 KoBART의 성능이 높아 다운스트림 태스크 목적에 맞는 사전훈련 모델의 구조가 자연어생성 성능에 가장 크게 영향을 미치는 요소인 것으로 나타났다. 추가적으로 본 연구에서는 정보전달성과 창작물로 문서의 특징을 구분한 것 외에 품사의 비중으로 문서의 특징을 파악해 사전훈련 언어모델의 성능을 비교했다. 그 결과, KoBART는 어미와 형용사/부사, 동사의 비중이 높을수록 성능이 떨어진 반면 명사의 비중이 클수록 성능이 좋았다. 반면 KoGPT는 KoBART에 비해 품사의 비중과 상관도가 낮았다. 이는 동일한 사전훈련 언어모델이라도 추론데이터의 특성에 따라 자연어생성 성능이 달라지기 때문에 다운스트림 태스크에 사전훈련 언어모델 적용 시 미세조정 외에 추론데이터의 특성에 대한 고려가 중요함을 의미한다. 향후 어순 등 분석을 통해 추론데이터의 특성을 파악하고, 이것이 한국어 생성에 미치는 영향을 분석한다면 한국어 특성에 적합한 언어모델이나 자연어생성 성능 지표 개발이 가능할 것이다.

직관주의적 유형론에서의 명제와 판단 (Propositions and Judgments in the Intuitionistic Type Theory)

  • 정인교
    • 논리연구
    • /
    • 제14권2호
    • /
    • pp.39-76
    • /
    • 2011
  • 마틴뢰프의 직관주의적 유형론의 중요 사항들을 설명하고, 그 체계의 가장 중요한 특성 중의 하나인 명제와 판단의 구분에 관해 검토한다. 1절에서 문제를 도입한 후, 2절에서 직관주의적 유형론의 명제개념은 직관주의적 명제개념의 발전된 형태임을 보이고, 3절에서는 직관주의적 유형론에서 가장 기본적인 판단개념을 설명한 후, 4절에서 직관주의적 유형론의 기본적인 추론규칙들을 설명하고 그 적용의 한 사례를 검토할 것이다. 마지막으로 5절에서, 직관주의적 유형론에서 명제와 판단의 구분이 차지하는 중요성을 부연한 후, 기초론적 체계에서 명제와 판단의 구분이 필수적인지의 문제와 관련하여, 통상적인 프레게적 구분으로부터 시작하여 직관주의적 유형론에서와 같은 구분에 이르기 위해서는 어떤 것들이 전제되거나 정당화되어야 하는지 검토할 것이다.

  • PDF