• Title/Summary/Keyword: 추력기 노즐

Search Result 123, Processing Time 0.02 seconds

Effect of Nozzle Contraction Angle on Performance of the SNECMA Modulatable Thrust Devices (노즐 수축각이 SNECMA 노즐목 가변 추력기 성능에 미치는 영향)

  • Wang, Seung-Won;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.14-17
    • /
    • 2011
  • Numerical simulation was carried out for the SNECMA modulatable thrust devices, with four different nozzle contraction angle $45^{\circ}$, $60^{\circ}$, $83^{\circ}$, and $90^{\circ}$, respectively. Results show that $83^{\circ}$ nozzle contraction is better in that it comes up with good thrust level with small aerodynamic load.

  • PDF

Preliminary Experimental Results of Pressure Control for Modulatable Thruster Applications (노즐목 가변 추력기의 압력제어 기법에 관한 예비실험 결과)

  • Choi, Jae-Sung;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.18-21
    • /
    • 2011
  • In this study, basic research on the pressure control using driven pintle of modulatable thruster is presented. For this purpose, pintle thruster and pintle shape was developed. The actuator model was selected by calculating pintle load using Fluent software. Preliminary unsteady experimental results show that huge pressure oscillation is occurred as the pintle approach toward nozzle wall. From the preliminary experimental results, we could see possibility of pressure control of the modulatable thruster.

  • PDF

Fabrication method and performance evaluation of components of micro solid propellant thruster (마이크로 고체 추진제 추력기 요소의 가공 방법 및 성능 평가)

  • Lee, Jong-Kwang;Park, Jong-Ik;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.225-228
    • /
    • 2007
  • Micro solid propellant thruster is the most feasible for development with current MEMS. Basic components of micro solid propellant thruster are diverging nozzle, micro igniter, combustion chamber, and solid propellant. Micro nozzles and micro chambers were fabricated using photosensitive glass by anisotropic wet etching technique. Micro Pt heaters on glass membrane which ignited solid propellant were developed. Components of thruster were integrated. Successful ignition was observed.

  • PDF

Development of Side Jet Thruster with Nozzle Closure Separation Device (고기동 추진기관의 노즐개방형 측추력기 개발)

  • Han, Houkseop;Park, Euiyong;Kim, Dongjin;Son, Youngil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.80-85
    • /
    • 2014
  • Side jet thruster using nozzle closure separation device provides a solid rocket with a trajectory shift function. Side jet thruster consists of low combustion temperature propellant, neutral type propellant grain and nozzle closure separation device. If a trajectory shift is required, side jet thrust is generated on the rocket by separating some nozzle closures located in the opposite direction to thrust. After completing trajectory shift, the other nozzle closures located in the thrust direction are separated to cease side jet thrust. The operation process is verified through ground static test. The result in this study can be applied to changing rocket trajectory by controlling side jet thrust through nozzle closure separation.

Numerical Study on the Flow Characteristics of a Side Jet Thruster Having Variable Thrust with a Rectangular Nozzle (사각 노즐이 적용된 가변 추력용 측추력기의 유동특성에 관한 수치해석)

  • Kim, Lina;Sung, Hong-Gye;Jeon, Young-Jin;Cho, Seunghwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.63-70
    • /
    • 2013
  • To analyze flow characteristics of the side jet thruster with 4 shutters and rectangular nozzles, a 3-D simulation has been implemented. Numerical calculations for two rotation angles of the shutter, have been conducted. Internal recirculation in a chamber and asymmetric flow structure in a nozzle were observed. In addition, the more shutter rotated, the more asymmetries of flow increased, and this phenomena resulted in thrust bias. The degrees of thrust bias and thrust performance with the rotation angles of the shutter were predicted and compared with theoretical thrust.

A Performance Characteristics of the Thruster Nozzle for Attitude Control of Space Vehicle According to Flight Altitude (우주비행체 자세제어용 추력기 노즐의 비행고도 변이별 추력성능 특성 해석)

  • Kam, Ho-Dong;Choi, Hyun-Ah;Kim, Jeong-Soo;Bae, Dae-Seok;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.167-171
    • /
    • 2012
  • A computational analysis of nozzle flow is conducted to investigate effects of the flight altitude on thrust performance. Reynolds-averaged Navier-Stokes equation with k-${\omega}$ SST(Shear Stress Transport) turbulence model is employed to simulate the nozzle flow in various altitude conditions, where continuum mechanics is to be valid. Thrust performance of the nozzle is exceedingly poor upto 10 km of flight altitude because of the irreversible phenomena such as shock and/or flow separation occurring inside the nozzle, whereas it is restored to the nominal value as the altitude is attained higher than 30 km.

  • PDF

Numerical study on flow characteristics of a variable thrust side jet thruster with a rectangular nozzle (사각 노즐이 적용된 가변 추력용 측추력기의 유동특성에 관한 수치해석)

  • Kim, Li-Na;Sung, Hong-Gye;Jeon, Young-Jin;Cho, Seung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.110-116
    • /
    • 2012
  • To analyze flow characteristics and performance of the side jet thruster with 4 shutters and rectangular nozzles, a 3-D simulation has been implemented. Numerical calculations for three rotation anlgles of the shutter, have been conducted. Internal recirculation in a chamber and asymmetric flow structure in a nozzle were observed. In addition, the more shutter rotated, the more asymmetries of flow increased, and this phenomena resulted in thrust bias. The degrees of thrust bias and thrust performance with the rotation angles of the shutter were predicted and comparisons with theoretical thrust were made.

  • PDF

Effects of Pintle Shape on Nozzle Flow Characteristics of Variable Nozzle Throat Area Pintle Thrusters (핀틀 형상이 가변 노즐목 핀틀 추력기의 노즐 유동에 미치는 영향)

  • Lee, Yong-Wu;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.275-278
    • /
    • 2010
  • By changing the nozzle throat area during the operation, thrust of a pintle thruster can be adjusted easily such as a liquid propulsion. In this paper, numerical analysis was carried out for SNECMA's pintle thruster with different pintle shapes. Flow field and aerodynamic load changed drastically with pintle shapes. Bore in the pintle decreased aerodynamic load significantly.

  • PDF

Performance Analysis and Configuration Design of the Thruster Nozzle for Ground-firing Test and Evaluation (지상연소시험평가용 추력기 노즐의 성능해석과 형상설계)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.10-16
    • /
    • 2012
  • A computational analysis of nozzle flow characteristics and plume structure is conducted to examine performance of the supersonic nozzle employed in a thruster for ground firing test. At first, flow simulations in two-dimensional converging-diverging nozzle are performed for the verification of computational capability as well as turbulence model validity. Axisymmetric converging-diverging nozzles for ground firing test are analyzed with the k-${\omega}$ SST model. A performance penalty caused by flow separation in a diverging section is observed in initially-designed nozzle. The performance could be enhanced by the modification of the diverging section of nozzle contour.

Steady State Experimental Study of Pintle Shape for Modulatable Thruster Applications (노즐목 가변 추력기 적용 목적의 핀틀 형상에 대한 정상상태 실험 연구)

  • Choi, Jae-Sung;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.153-156
    • /
    • 2011
  • Steady state experiment was carried out for modulatable thruster applications, with four different pintles. Results show that thrust can be modulated by changing nozzle throat area with pintle penetration. However, effect of pintle shape on the thruster performance is yet to be concluded.

  • PDF