• Title/Summary/Keyword: 최종강도해석

Search Result 214, Processing Time 0.021 seconds

A Study on the Ultimate Strength Behavior for Ship Perforated Stiffened Plate (선체 유공보강판의 최종강도 거동에 관한 연구)

  • Ko Jae-Yong;Lee Jun-Kyo;Park Joo-Shin;Bae Dong-Kyun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.141-146
    • /
    • 2005
  • Ship have cutout inner bottom and girder and floor etc. Ship's structure is used much, and structure strength must be situated, but establish new concept when high stress interacts sometimes fatally the area. There is no big problem usually by aim of weight reduction, a person and change of freight, piping etc. Because cutout's existence grow up in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, stiffened perforated plate considering buckling strength and ultimate strength is one of important design criteria which must examine when decide structural concept at initial design. Therefore, and, reasonable buckling strength about perforated stiffened plate need to ultimate strength limited design . Calculated ultimate strength varied several web height and cutout's dimension, and thickness in this investigated data. Used program(ANSYS) applied F.E.A code based on finite element method.

  • PDF

Post-Buckling Behaviour and Buckling Strength of the Circular Cylinder Under Axial Compression (압축하중을 받는 원통실린더의 후좌굴 거동 및 좌굴강도)

  • Koo, Bon Guk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.260-266
    • /
    • 2018
  • Cylindrical shells are often used in the construction of ship and land-based structures such as deck plating with a camber, side shell plating for fore and aft part pipes, as well as storage tanks. It has been believed that such curved shells can be modeled fundamentally as a part of the cylinder under axial compression. From the estimations made based on cylindrical models, it is known that in general, curvature increases the buckling strength of a curved shell when subjected to axial compression, and the same curvature is also expected to increase the overall strength. A series of elastic large deflection analyses were conducted in order to clarify the fundamentals observed in the buckling and post-buckling behaviour of circular cylinders under axial compression. In the present paper, an FE-series analysis has been performed based on the elastic large deflection behaviour, and the effect of parameters has been clarified. The ultimate strength behavior of the circular cylinder was found to be significantly influenced by both the initial deflection and the FE-modeling method.

Utimate strength analysis of cylindrical members of offshore structure subject to combined loads (조합하중을 받는 해양구조물 원통부재의 최동강도 해석)

  • 박치모
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.11-17
    • /
    • 1997
  • Simple and efficient way of nonlinear analysis considering elasto-plastic large deformation is introduced to calculate the strength of ring-stiffened cylinears subject to combined load of axial compression and lateral pressure. Parametric study gives various collapse modes according to the combination ratio of axial compression and lateral pressure, interaction between axial compression and lateral pressure and imperfection sensitivity of ultimate strength.

  • PDF

Ultimate Strength Prediction Formula Estimation of Aluminium Alloy Plate Girders Subjected to Patch Loading (패치로딩을 받는 알루미늄 합금 플레이트 거더의 최종강도 예측식 추정)

  • Oh, Young-Cheol;Seo, Kwang-Cheol;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.543-551
    • /
    • 2015
  • In this paper, Used on the bridge and ship, investigate the physical relationship of aluminium plate girders(A6082-T6) considering the marine environment. Plate girder will experience the patch loading such as moving load, surcharge in the product life cycle. The ultimate strength of aluminum plate girders subjected to these loads applied multiple numerical model and performed the elasto-plastic large deflection series analysis and was proposed the predicted formula for regression analysis. The predicted formula was shown by the relationship of ultimate strength and slenderness. If the slenderness is low(0-2.3), it causes a 9 % error, and If the slenderness is higher(2.3-4.0), it causes a 1-2 % error. Therefore, the propriety of proposed prediction formular was found to be assess rationally.

Estimation of Buckling and Plastic Behaviour according to the Analysis Model of the Stiffened Plate (보강판의 해석모델에 따른 좌굴 및 소성거동 평가)

  • Ko, Jae-Yong;Oh, Young-Cheol;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.271-279
    • /
    • 2007
  • Ship structures are basically an assembly of plate elements and estimation load-carrying capacity or the ultimate strength is one of the most important criterion for estimated safety assessment and rational design on the ship structure. Also, Structural elements making up ship plated structures do not work separately against external load. One of the critical collapse events of a ship structure is the occurrence of overall buckling and plastic collapse of deck or bottom structure subjected to longitudinal bending. So, the deck and the bottom plates are reinforced by a number af longitudinal stiffeners to increase their strength and load-carrying capacity. For a rational design avoiding such a sudden collapse, it is very important to know the buckling and plastic behaviour or collapse pattern of the stiffened plate under axial compression. In this present study, to investigate effect af modeling range, the finite element method are used and their results are compared varying the analysis ranges. When making the FEA model, six types of structural modeling are adopted varying the cross section of stiffener. In the present paper, a series of FEM elastoplastic large deflection analyses is performed on a stiffened plate with fiat-bar, angle-bar and tee-bar stiffeners. When the applied axial loading, the influences of cross-sectional geometries on collapse behaviour are discussed. The purpose of the present study is examined to numerically calculate the characteristics of buckling and ultimate strength behavior according to the analysis method of ship's stiffened plate subject to axial loading.

Development of Fire-resistant Concrete using Fibre Cocktail (섬유혼입공법을 적용한 고내화 콘크리트의 개발)

  • Youm, Kwang-Soo;Jeon, Hyun-Kyu;Won, Cheol;Kim, Heung-Youl
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.949-952
    • /
    • 2008
  • 화재안전 신뢰성이 확보된 고강도 콘크리트 구조물의 시장 공급을 위하여 GS건설에서는 2005년 부터 고강도 콘크리트 구조물의 강도 영역별 폭렬 저감 및 거동 안전성 평가와 수치해석 방법을 통한 경제적인 설계방법를 최종 연구목표로 하여 현재까지 콘크리트 재료의 열적 특성 확보와 구조부재 화재 특성 연구를 수행해 왔다. 강도발현, 시공성, 내화성능과 경제성에 대한 분석을 해외연구 기관에 의뢰하여 섬유혼입공법을 선정한 후 이에 대한 재료의 물리적 특성과 역학적 특성 실험결과를 바탕으로 고강도 콘크리트 구조부재의 내화성능을 예측 분석할 수 있도록 비열 모델, 열전도율모델, 압축강도 모델, 탄성계수 모델을 구축하였다. 또한 기둥과 보에 대한 내화실험을 실시하여 내화성능을 평가하였으며, 이에 대한 열적 해석을 병행하여 진행하였다.

  • PDF

A Study on the Buckling Strength of Perforated Plates for 60M Twin-hull Car-ferry (60M급 쌍동형 카페리 구조의 유공판 좌굴강도 연구)

  • Seo, Kwang-Cheol;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.126-132
    • /
    • 2018
  • This paper discusses about results of advanced buckling strength design for several kinds of perforated plated in the twin-hull car-ferry. For medium / small sized high speed vessels with a length of more than 50 meters and a length / width ratio of more than 12, such as car-ferries, it is highly possible that the buckling strength becomes weak due to the relatively thin thickness and the use of low strength capacity such as mild steel. Especially, it becomes big problem about weak buckling rigidity around the opening to access purpose in the perforated. As regarding safety design point of view for perforated plate, it is necessary to clarify buckling strength and ultimate strength by the distribution of in-plane load distribution around the opening. In this study, nonlinear series analysis using ANSYS was performed to clarify the influence of parameters such as aspect ratio, opening ratio and opening shape affecting the buckling and ultimate strength characteristics of the perforated plate under axial compression and we are derived the optimum design as buckling strength point of view. Based on these results, the governing factor determining the buckling strength of the perforated plate was the opening ratio, and the aspect ratio and the shape of the hole were not influenced.

Development of Designed Formulae for Predicting Ultimate Strength of the Perforated Stiffened Plate subjected to Axial Compressive Loading (압축하중을 받는 유공보강판 구조의 최종강도 설계식 개발)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Kyung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.435-445
    • /
    • 2007
  • Ship structures are thin-walled structures and lots of cutouts, for example, of inner bottom structure, girder, upper deck hatch, floor and dia-frame etc. In the case where a plate has cutout it experiences reduced buckling and ultimate strength and at the same time the in-plane stress under compressive load produced by hull girder bending will be redistributed. In the present paper, we investigated several kinds of perforated stiffened model from actual ship structure and series of elasto-plastic large deflection analyses were performed to investigate into the influence of perforation on the buckling and ultimate strength of the perforated stiffened plate varying the cutout ratio, web height, thickness and type of cross-section by commercial FEA program(ANSYS). Closed-form formulas for predicting the ultimate strength of the perforated stiffened plate are empirically derived by curve fitting based on the Finite Element Analysis results. These formulas are used to evaluate the ultimate strength, which showed good correlation with FEM results. These results will be useful for evaluating the ultimate strength of the perforated stiffened plate in the preliminary design.

Ultimate Strength Analysis of Ring-stiffened Cylinders Using Commercial Softwares(II) (상용소프트웨어를 이용한 원환보강 원통의 최종강도 해석(II))

  • 박치모;이승훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.36-40
    • /
    • 2002
  • Despite the frequent use of ring-stiffened cylinders as a submarine pressure hull or members of various types of offshore structure, their ultimate strength analysis methods have not been well established because of their complex structural characteristics. This paper has established the method how to use commercial softwares based on the finite element method to implement the ultimate strength analysis of ring-stiffened cylinders covering both types of initial imperfection, i.e. initial deformation and initial stress by combining two separately offered functions of common commercial finite element softwares, linear elastic buckling analysis and nonlinear stress analysis. Developed method was applied to one of the world-widely used commercial softwares. ABAQUS for the analysis of ring stiffened cylinders. This paper ends with some useful information about the imperfection sensitivity of ultimate strength ring stiffened cylinders.

Ultimate Strength Analysis of Ring-stiffened Cylinders Using Commercial softwares (I) (상용소프트웨어를 이용한 원환보강 원통의 최종강도 해석(I))

  • 박치모;이승훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.120-123
    • /
    • 2001
  • Despite the increasing necessity of accurate estimation of ring-stiffened cylinders'ultimate strength, the complex structural behavior of cylinders has made their design mainly depend on empirical formulas mostly based on limited test data rather than theoretical background. This paper has developed the imperfection method which enables the ultimate strength analysis of buckling-sensitive structures by combining two separate functions covered by common commercial finite element softwares, which are linear elastic buckling analysis and nonlinear stress analysis. Developed method was applied to two of the world most renowned softwares, MSC/NASTRAN and ABAQUS, for the analysis of ring-stiffened cylinders and unexpectedly big difference in their analysis results was found. This tells that many widely used commercial softwares have their different strong points and weak points and the choice of commercial software should be cautiously made after thorough inspection. This paper ends with some useful information about which of the two aforementioned softwares is more respectively for the linear elastic buckling analysis and the ultimate strength analysis of ring-stiffened cylinders.

  • PDF