• Title/Summary/Keyword: 최적화 모델

Search Result 2,991, Processing Time 0.037 seconds

Evolutionarily Optimized Design of Self-Organized Fuzzy Polynomial Neural Networks by Means of Dynamic Search Method of Genetic Algorithms (유전자 알고리즘의 동적 탐색 방법을 이용한 자기구성 퍼지 다항식 뉴럴 네트워크의 진화론적 최적화 설계)

  • Park Ho-Sung;Oh Sung-Kwun;Ahn Tae-Chon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.475-478
    • /
    • 2005
  • 본 논문에서는 자기구성 퍼지다항식 뉴럴 네트워크(SOFPNN)를 구성하고 있는 퍼지 다항식뉴론(FPM)의 구조와 파라미터를 유전자 알고리즘을 이용하여 최적화시킨 새로운 개념의 진화론적 최적 고급 자기구성 퍼지 다항식 뉴릴 네트워크를 소개한다. 기존의 자기구성 퍼지 다항식 뉴럴 네트워크에서 모델을 설계할 때에는 설계자의 주관적인 특징과 시행착오에 의해서 모델을 구축하였다. 이러한 설계자의 경험을 배제하고 객관적이고 효율적인 모델을 구축하기 위해서 본 논문에서는 FPH의 파라미터들을 최적화 알고리즘인 유전자 알고리즘을 이용하여 동조하였다. 즉, 모델을 구축하는데 기본이 되는 FPN의 각각의 파라미터들-입력변수의 수, 다항식 차수, 입력변수, 멤버쉽 함수의 수, 그리고 멤버쉽 함수의 정점-을 동조함으로써 기존의 모델에 비해서 구조적으로 그리고 파라미터적으로 최적화된 네트워크를 생성할 수 있다. 뿐만 아니라 주어진 데이터의 특성을 모델 구축에 반영하고자 멤버쉽 함수의 정점 역시 유전자 알고리즘으로 동조하였다. 실험적 예제를 통하여 제안된 모델의 성능을 확인한 결과 기존의 퍼지모델 및 신경망 모델에 비해서 아주 우수한 근사화 능력과 일반화 능력을 가짐을 알 수 있다.

  • PDF

Particle-Structure Collision Modeling for Topology Optimization (위상최적설계를 위한 입자-구조 충돌 모델)

  • Young Hun Choi;Gil Ho Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.365-370
    • /
    • 2023
  • This paper presents a particle-structure collision model for topology optimization, which requires sensitivity analysis. Therefore, a new model that incorporates sensitivity analysis is needed. The proposed particle-structure collision model conducts sensitivity analysis for topology optimization. To evaluate the accuracy of the proposed model, it was applied to a simplified one-dimensional collision problem. Optimization of the final positions of particles using topology optimization through this model confirmed the suitability of the proposed approach. These results demonstrate that it is possible to consider particle-structure collision in topology optimization.

A Study on Transportation Optimization Problem using Coopr (Coopr를 이용한 운송 최적화 해법)

  • Ro, cheul woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.187-188
    • /
    • 2012
  • 운송(transportation) 문제는 잘 알려져 있는 최적화 문제로 공급자인 생산지에서 소비자인 대리점으로 물건을 최소의 비용으로 운송시키는 문제이다. Coopr는 쉽고도 강력한 언어로 최근 각광받고 있는 파이썬 언어로 구현되었으며 최적화 모델의 해를 구할 수 있는 공용 소프트웨어 패키지이다. 본 논문에서는 몇몇 생산지에서 여러 대리점으로 물건을 운송시키는 최적화 문제를 Coopr의 한 부분인 pyomo를 이용하여 모델을 개발하고 최적화 해를 구할 수 있는 방법을 소개 한다.

  • PDF

Improved Automatic Lipreading by Stochastic Optimization of Hidden Markov Models (은닉 마르코프 모델의 확률적 최적화를 통한 자동 독순의 성능 향상)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.523-530
    • /
    • 2007
  • This paper proposes a new stochastic optimization algorithm for hidden Markov models (HMMs) used as a recognizer of automatic lipreading. The proposed method combines a global stochastic optimization method, the simulated annealing technique, and the local optimization method, which produces fast convergence and good solution quality. We mathematically show that the proposed algorithm converges to the global optimum. Experimental results show that training HMMs by the method yields better lipreading performance compared to the conventional training methods based on local optimization.

Genetic Optimization of Information Granules-based Fuzzy Model (정보 입자 기반 퍼지 모델의 유전자적 최적화)

  • Park Keon-Jun;Lee Dong-Yoon;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.467-470
    • /
    • 2005
  • 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 따라서 본 논문에서는 퍼지 모델의 전반부 및 후반부의 구조 동정과 파라미터 동정에 있어서 최적의 구조 및 파라미터를 찾기 위해 유전자 알고리즘을 이용한다. 초기 퍼지 모델을 설계하기 위해 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽함수의 수, 그리고 후반부 형태를 결정한다. 구축된 퍼지 모델은 유전자 알고리즘에 의해 세대를 거듭하면서 전반부 파라미터를 자동 동조함으로써 최적의 퍼지 모델을 설계한다. 또한 구조 동정 및 파라미터 동정을 동시에 시행함으로서 정보 입자 기반 퍼지 모델의 유전자적 최적화를 도모한다. 마지막으로 제안된 퍼지 모델은 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF

Optimization Of Water Quality Prediction Model In Daechong Reservoir, Based On Multiple Layer Perceptron (다층 퍼셉트론을 기반으로 한 대청호 수질 예측 모델 최적화)

  • Lee, Hankyu;Kim, Jin Hui;Byeon, Seohyeon;Park, Kangdong;Shin, Jae-ki;Park, Yongeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.43-43
    • /
    • 2022
  • 유해 조류 대발생은 전국 각지의 인공호소나 하천에서 다발적으로 발생하며, 경관을 해치고 수질을 오염시키는 등 수자원에 부정적인 영향을 미친다. 본 연구에서는 인공호소에서 발생하는 유해 조류 대발생을 예측하기 위해 심층학습 기법을 이용하여 예측 모델을 개발하고자 하였다. 대상 지점은 대청호의 추동 지점으로 선정하였다. 대청호는 금강유역 중류에 위치한 댐으로, 약 150만명에 달하는 급수 인구수를 유지 중이기에 유해 남조 대발생 관리가 매우 중요한 장소이다. 학습용 데이터 구축은 대청호의 2011년 1월부터 2019년 12월까지 측정된 수질, 기상, 수문 자료를 입력 자료를 이용하였다. 수질 예측 모델의 구조는 다중 레이어 퍼셉트론(Multiple Layer Perceptron; MLP)으로, 입력과 한 개 이상의 은닉층, 그리고 출력층으로 구성된 인공신경망이다. 본 연구에서는 인공신경망의 은닉층 개수(1~3개)와 각각의 레이어에 적용되는 은닉 노드 개수(11~30개), 활성함수 5종(Linear, sigmoid, hyperbolic tangent, Rectified Linear Unit, Exponential Linear Unit)을 각각 하이퍼파라미터로 정하고, 모델의 성능을 최대로 발휘할 수 있는 조건을 찾고자 하였다. 하이퍼파라미터 최적화 도구는 Tensorflow에서 배포하는 Keras Tuner를 사용하였다. 모델은 총 3000 학습 epoch 가 진행되는 동안 최적의 가중치를 계산하도록 설계하였고, 이 결과를 매 반복마다 저장장치에 기록하였다. 모델 성능의 타당성은 예측과 실측 데이터 간의 상관관계를 R2, NSE, RMSE를 통해 산출하여 검증하였다. 모델 최적화 결과, 적합한 하이퍼파라미터는 최적화 횟수 총 300회에서 256 번째 반복 결과인 은닉층 개수 3개, 은닉 노드 수 각각 25개, 22개, 14개가 가장 적합하였고, 이에 따른 활성함수는 ELU, ReLU, Hyperbolic tangent, Linear 순서대로 사용되었다. 최적화된 하이퍼파라미터를 이용하여 모델 학습 및 검증을 수행한 결과, R2는 학습 0.68, 검증 0.61이었고 NSE는 학습 0.85, 검증 0.81, RMSE는 학습 0.82, 검증 0.92로 나타났다.

  • PDF

Optimal Sensor Location in Water Distribution Network using XGBoost Model (XGBoost 기반 상수도관망 센서 위치 최적화)

  • Hyewoon Jang;Donghwi Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.217-217
    • /
    • 2023
  • 상수도관망은 사용자에게 고품질의 물을 안정적으로 공급하는 것을 목적으로 하며, 이를 평가하기 위한 지표 중 하나로 압력을 활용한다. 최근 스마트 센서의 설치가 확장됨에 따라 기계학습기법을 이용한 실시간 데이터 기반의 분석이 활발하다. 따라서 어디에서 데이터를 수집하느냐에 대한 센서 위치 결정이 중요하다. 본 연구는 eXtreme Gradient Boosting(XGBoost) 모델을 활용하여 대규모 상수도관망 내 센서 위치를 최적화하는 방법론을 제안한다. XGBoost 모델은 여러 의사결정 나무(decision tree)를 활용하는 앙상블(ensemble) 모델이며, 오차에 따른 가중치를 부여하여 성능을 향상시키는 부스팅(boosting) 방식을 이용한다. 이는 분산 및 병렬 처리가 가능해 메모리리소스를 최적으로 사용하고, 학습 속도가 빠르며 결측치에 대한 전처리 과정을 모델 내에 포함하고 있다는 장점이 있다. 모델 구현을 위한 독립 변수 결정을 위해 압력 데이터의 변동성 및 평균압력 값을 고려하여 상수도관망을 대표하는 중요 절점(critical node)를 선정한다. 중요 절점의 압력 값을 예측하는 XGBoost 모델을 구축하고 모델의 성능과 요인 중요도(feature importance) 값을 고려하여 센서의 최적 위치를 선정한다. 이러한 방법론을 기반으로 상수도관망의 특성에 따른 경향성을 파악하기 위해 다양한 형태(예를 들어, 망형, 가지형)와 구성 절점의 수를 변화시키며 결과를 분석한다. 본 연구에서 구축한 XGBoost 모델은 추가적인 전처리 과정을 최소화하며 대규모 관망에 간편하게 사용할 수 있어 추후 다양한 입출력 데이터의 조합을 통해 센서 위치 외에도 상수도관망에서의 성능 최적화에 활용할 수 있을 것으로 기대한다.

  • PDF

Design Optimization of Bracket for Wear Sensor of Automobile Brake Pads Based on Dynamic Kriging Surrogate Model (자동차 브레이크 패드 마모량 측정센서 브라켓의 다이나믹크리깅 대리모델 기반 설계최적화)

  • Jun-Yeong Jeong;Jung Joo Yoo;Kyung Seok Byun;Hyunkyoo Cho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.95-101
    • /
    • 2024
  • This paper introduces an optimized design for a sensor bracket used to measure the wear amount of an automobile brake pad, based on a dynamic kriging surrogate model. During testing, the temperature of the brake pad can increase beyond 600℃, which often causes sensor malfunction. Therefore, it is essential to optimize the shape of the sensor bracket to minimize heat transfer. To reduce the computational cost of the optimization, the heat-transfer simulation is replaced by a dynamic kriging surrogate model. Dynamic kriging utilizes the best combination of correlation and basis functions and constructs an accurate surrogate model. Following optimization, the temperature of the sensor position decreases by 7.57%. The results from the surrogate model under optimum conditions are verified by a heat-transfer simulation, and the design optimization using a surrogate model is found to be effective.

A Study on Optimization of Decision Tree based State Tying Model (결정트리 기반 상태공유 모텔 최적화에 관한 연구)

  • 한명희;이호준;김순협
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.17-20
    • /
    • 2003
  • 본 논문에서는 공유 모델링의 대표적인 방법인 결정트리 기반 상태공유 모델을 기반으로 하여 그 출력 확률 분포의 혼합 가우시안 수를 줄임으로써 모델을 최적화하고자 하였다. 결정트리 기반의 상태공유 모델링은 일반적인 방법을 따랐으며 혼합 가우시안 수를 늘려 인식률이 최대가 되는 지점에서 혼합 가우시안을 클러스터링하여 그 수를 줄였다. 클러스터링 시에 필요한 거리 측정 방법이나 가까운 두 가우시안의 합성 방법을 여러 기법을 실험하였다. 이때 인식률은 클러스터링 이전인 97.2%를 유지하였으며 총 혼합 가우시안의 감소율은 1.0%를 보임으로써 모델을 최적화할 수 있었다.

  • PDF

Dynamic Control of Coordinated Traffic Signals for Minimizing Queue-lengths (대기 차량 최소화를 위한 동적 교통 신호연동 모델)

  • 윤경섭
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10a
    • /
    • pp.196-205
    • /
    • 1998
  • 교통신호에서 주로 고려되는 변수는 신호주기(cycle length), 녹색시간(green split), 옵셋(offset)그리고 좌회전 현시순서(left-turn phase sequence)로 구성된다. 기존의 대부분의 연동 모델들은 고정된 주기하에서 평균적인 유입 교통량을 측정한 후, 선형최적화 이론을 적용하여 최적 신호를 산출한다. 그러나 이 방법은 어디까지나 평균적인 데이터에 대해서 계산을 한 것이기 때문에 실시간 최적화를 제공하기가 어렵다. 본 연구에서는 평균 차량 통행량 대신 실시간으로 입력되는 차량 대기행렬, 차량 도착률을 기초로 대기차량을 최소화하는 동적 신호시간 산출 모델을 개발하였다. 본 모델에서는 Peytechew가 제안한 각 진입로에서의 대기 차량 예측 모델을 기초로 하여 다음 주기에서의 차량 대기 행렬을 예측한 후, 선형 최적화 이론을 적용하여 신호시간을 산출한다. 본 모델에서 산출된 신호주기와 녹색시간은 대기차량길이를 최소화하는 신호 시간으로서 교차로간의 연동효과를 고려하여 실시산 교통상황에 따라 주기별로 변화한다. 본 모델은 3개의 교차로로 구성된 네트워크를 대상으로 적용하였다. 실험 네트워크의 주도로 교통량은 부도로의 교통량 보다 많다고 가정하였으며 각 링크사이에서의 차량 진출입은 없다고 보았다.

  • PDF